亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初一學(xué)習(xí)方法>七年級(jí)數(shù)學(xué)>

      七年級(jí)數(shù)學(xué)下冊(cè)教學(xué)設(shè)計(jì)

      時(shí)間: 妙純901 分享

        教學(xué)設(shè)計(jì)代表著七年級(jí)數(shù)學(xué)教師對(duì)課堂的假設(shè)與預(yù)想,以下是學(xué)習(xí)啦小編為大家整理的七年級(jí)數(shù)學(xué)下冊(cè)教學(xué)設(shè)計(jì),希望你們喜歡。

        七年級(jí)數(shù)學(xué)下教學(xué)設(shè)計(jì)

        5.1相交線

        [教學(xué)目標(biāo)]

        1. 通過(guò)動(dòng)手、操作、推斷、交流等活動(dòng),進(jìn)一步發(fā)展空間觀念,培養(yǎng)識(shí)圖能力,推理能力和有條理表達(dá)能力

        2. 在具體情境中了解鄰補(bǔ)角、對(duì)頂角,能找出圖形中的一個(gè)角的鄰補(bǔ)角和對(duì)頂角,理解對(duì)頂角相等,并能運(yùn)用它解決一些簡(jiǎn)單問(wèn)題

        [教學(xué)重點(diǎn)與難點(diǎn)]

        重點(diǎn):鄰補(bǔ)角與對(duì)頂角的概念.對(duì)頂角性質(zhì)與應(yīng)用

        難點(diǎn):理解對(duì)頂角相等的性質(zhì)的探索

        [教學(xué)設(shè)計(jì)]

        一.創(chuàng)設(shè)情境 激發(fā)好奇 觀察剪刀剪布的過(guò)程,引入兩條相交直線所成的角

        在我們的生活的世界中,蘊(yùn)涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。

        觀察剪刀剪布的過(guò)程,引入兩條相交直線所成的角。

        學(xué)生觀察、思考、回答問(wèn)題

        教師出示一塊布和一把剪刀,表演剪布過(guò)程,提出問(wèn)題:剪布時(shí),用力握緊把手,兩個(gè)把手之間的的角發(fā)生了什么變化?剪刀張開(kāi)的口又怎么變化?

        教師點(diǎn)評(píng):如果把剪刀的構(gòu)造看作是兩條相交的直線,以上就關(guān)系到兩條直線相交所成的角的問(wèn)題,

        二.認(rèn)識(shí)鄰補(bǔ)角和對(duì)頂角,探索對(duì)頂角性質(zhì)

        1.學(xué)生畫(huà)直線AB、CD相交于點(diǎn)O,并說(shuō)出圖中4個(gè)角,兩兩相配

        共能組成幾對(duì)角?根據(jù)不同的位置怎么將它們分類(lèi)?

        學(xué)生思考并在小組內(nèi)交流,全班交流。

        當(dāng)學(xué)生直觀地感知角有“相鄰”、“對(duì)頂”關(guān)系時(shí),教師引導(dǎo)學(xué)生用

        幾何語(yǔ)言準(zhǔn)確表達(dá)

        ;

        有公共的頂點(diǎn)O,而且 的兩邊分別是 兩邊的反向延長(zhǎng)線

        2.學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類(lèi)角的度數(shù)有什么關(guān)系?

        (學(xué)生得出結(jié)論:相鄰關(guān)系的兩個(gè)角互補(bǔ),對(duì)頂?shù)膬蓚€(gè)角相等)

        3學(xué)生根據(jù)觀察和度量完成下表:

        兩條直線相交 所形成的角 分類(lèi) 位置關(guān)系 數(shù)量關(guān)系

        教師提問(wèn):如果改變 的大小,會(huì)改變它與其它角的位置關(guān)系和數(shù)量關(guān)系嗎?

        4.概括形成鄰補(bǔ)角、對(duì)頂角概念和對(duì)頂角的性質(zhì)

        三.初步應(yīng)用

        練習(xí):

        下列說(shuō)法對(duì)不對(duì)

        (1) 鄰補(bǔ)角可以看成是平角被過(guò)它頂點(diǎn)的一條射線分成的兩個(gè)角

        (2) 鄰補(bǔ)角是互補(bǔ)的兩個(gè)角,互補(bǔ)的兩個(gè)角是鄰補(bǔ)角

        (3) 對(duì)頂角相等,相等的兩個(gè)角是對(duì)頂角

        學(xué)生利用對(duì)頂角相等的性質(zhì)解釋剪刀剪布過(guò)程中所看到的現(xiàn)象

        四.鞏固運(yùn)用例題:如圖,直線a,b相交, ,求 的度數(shù)。

        [鞏固練習(xí)](教科書(shū)5頁(yè)練習(xí))已知,如圖, ,求: 的度數(shù)

        [小結(jié)]

        鄰補(bǔ)角、對(duì)頂角.

        [作業(yè)]課本P9-1,2P10-7,8

        [備選題]

        一判斷題:

        如果兩個(gè)角有公共頂點(diǎn)和一條公共過(guò),而且這兩個(gè)角互為補(bǔ)角,那么它們互為鄰補(bǔ)角( )

        兩條直線相交,如果它們所成的鄰補(bǔ)角相等,那么一對(duì)對(duì)頂角就互補(bǔ)( )

        二填空題

        1如圖,直線AB、CD、EF相交于點(diǎn)O, 的對(duì)頂角是 , 的鄰補(bǔ)角是

        若 : =2:3, ,則 =

        2如圖,直線AB、CD相交于點(diǎn)O

        則

        5.1.2 垂線

        [教學(xué)目標(biāo)]

        1. 理解垂線、垂線段的概念,會(huì)用三角尺或量角器過(guò)一點(diǎn)畫(huà)已知直線的垂線。

        2. 掌握點(diǎn)到直線的距離的概念,并會(huì)度量點(diǎn)到直線的距離。

        3. 掌握垂線的性質(zhì),并會(huì)利用所學(xué)知識(shí)進(jìn)行簡(jiǎn)單的推理。

        [教學(xué)重點(diǎn)與難點(diǎn)]

        1.教學(xué)重點(diǎn):垂線的定義及性質(zhì)。

        2.教學(xué)難點(diǎn):垂線的畫(huà)法。

        [教學(xué)過(guò)程設(shè)計(jì)]

        一. 復(fù)習(xí)提問(wèn):

        1、 敘述鄰補(bǔ)角及對(duì)頂角的定義。

        2、 對(duì)頂角有怎樣的性質(zhì)。

        二.新課:

        引言:

        前面我們復(fù)習(xí)了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時(shí),這兩條直線有怎樣特殊的位置關(guān)系呢?日常生活中有沒(méi)有這方面的實(shí)例呢?下面我們就來(lái)研究這個(gè)問(wèn)題。

        (一)垂線的定義

        當(dāng)兩條直線相交的四個(gè)角中,有一個(gè)角是直角時(shí),就說(shuō)這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。

        如圖,直線AB、CD互相垂直,記作 ,垂足為O。

        請(qǐng)同學(xué)舉出日常生活中,兩條直線互相垂直的實(shí)例。

        注意:

        1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。

        2、掌握如下的推理過(guò)程:(如上圖)

        反之,

        (二)垂線的畫(huà)法

        探究:

        1、用三角尺或量角器畫(huà)已知直線l的垂線,這樣的垂線能畫(huà)出幾條?

        2、經(jīng)過(guò)直線l上一點(diǎn)A畫(huà)l的垂線,這樣的垂線能畫(huà)出幾條?

        3、經(jīng)過(guò)直線l外一點(diǎn)B畫(huà)l的垂線,這樣的垂線能畫(huà)出幾條?

        畫(huà)法:

        讓三角板的一條直角邊與已知直線重合,沿直線左右移動(dòng)三角板,使其另一條直角邊經(jīng)過(guò)已知點(diǎn),沿此直角邊畫(huà)直線,則這條直線就是已知直線的垂線。

        注意:如過(guò)一點(diǎn)畫(huà)射線或線段的垂線,是指畫(huà)它們所在直線的垂線,垂足有時(shí)在延長(zhǎng)線上。

        (三)垂線的性質(zhì)

        經(jīng)過(guò)一點(diǎn)(已知直線上或直線外),能畫(huà)出已知直線的一條垂線,并且只能畫(huà)出一條垂線,即:

        性質(zhì)1 過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

        練習(xí):教材第7頁(yè)

        探究:

        如圖,連接直線l外一點(diǎn)P與直線l上各點(diǎn)O,

        A,B,C,……,其中 (我們稱(chēng)PO為點(diǎn)P到直線

        l的垂線段)。比較線段PO、PA、PB、PC……的長(zhǎng)短,這些線段中,哪一條最短?

        性質(zhì)2 連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

        簡(jiǎn)單說(shuō)成: 垂線段最短。

        (四)點(diǎn)到直線的距離

        直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。

        如上圖,PO的長(zhǎng)度叫做點(diǎn) P到直線l的距離。

        例1

        (1)AB與AC互相垂直;

        (2)AD與AC互相垂直;

        (3)點(diǎn)C到AB的垂線段是線段AB;

        (4)點(diǎn)A到BC的距離是線段AD;

        (5)線段AB的長(zhǎng)度是點(diǎn)B到AC的距離;

        (6)線段AB是點(diǎn)B到AC的距離。

        其中正確的有( )

        A. 1個(gè) B. 2個(gè)

        C. 3個(gè) D. 4個(gè)

        解:A

        例2 如圖,直線AB,CD相交于點(diǎn)O,

        解:略

        例3 如圖,一輛汽車(chē)在直線形公路AB上由A

        向B行駛,M,N分別是位于公路兩側(cè)的村莊,

        設(shè)汽車(chē)行駛到點(diǎn)P位置時(shí),距離村莊M最近,

        行駛到點(diǎn)Q位置時(shí),距離村莊N最近,請(qǐng)?jiān)趫D中公路AB上分別畫(huà)出P,Q兩點(diǎn)位置。

        練習(xí):

        1.

        2.教材第9頁(yè)3、4

        教材第10頁(yè)9、10、11、12

        小結(jié):

        1. 要掌握好垂線、垂線段、點(diǎn)到直線的距離這幾個(gè)概念;

        2. 要清楚垂線是相交線的特殊情況,與上節(jié)知識(shí)聯(lián)系好,并能正確利用工具畫(huà)出標(biāo)準(zhǔn)圖形;

        3. 垂線的性質(zhì)為今后知識(shí)的學(xué)習(xí)奠定了基礎(chǔ),應(yīng)該熟練掌握。

        作業(yè):教材第9頁(yè)5、6.

        5.2.1 平行線

        [教學(xué)目標(biāo)]

        1.理解平行線的意義,了解同一平面內(nèi)兩條直線的位置關(guān)系;

        2.理解并掌握平行公理及其推論的內(nèi)容;

        3.會(huì)根據(jù)幾何語(yǔ)句畫(huà)圖,會(huì)用直尺和三角板畫(huà)平行線;

        4.了解“三線八角”并能在具體圖形中找出同位角、內(nèi)錯(cuò)角與同旁?xún)?nèi)角;

        4.了解平行線在實(shí)際生活中的應(yīng)用,能舉例加以說(shuō)明.

        [教學(xué)重點(diǎn)與難點(diǎn)]

        1.教學(xué)重點(diǎn):平行線的概念與平行公理;

        2.教學(xué)難點(diǎn):對(duì)平行公理的理解.

        [教學(xué)過(guò)程]

        一、復(fù)習(xí)提問(wèn)

        相交線是如何定義的?

        二、新課引入

        平面內(nèi)兩條直線的位置關(guān)系除平行外,還有哪些呢?

        制作教具,通過(guò)演示,得出平面內(nèi)兩條直線的位置關(guān)系及平行線的概念.

        三、同一平面內(nèi)兩條直線的位置關(guān)系

        1.平行線概念:在同一平面內(nèi),不相交的兩條直線叫做平行線.直線a與b平行,記作a∥b.

        (畫(huà)出圖形)

        2.同一平面內(nèi)兩條直線的位置關(guān)系有兩種:(1)相交;(2)平行.

        3.對(duì)平行線概念的理解:

        兩個(gè)關(guān)鍵:一是“在同一個(gè)平面內(nèi)”(舉例說(shuō)明);二是“不相交”.

        一個(gè)前提:對(duì)兩條直線而言.

        4.平行線的畫(huà)法

        平行線的畫(huà)法是幾何畫(huà)圖的基本技能之一,在以后的學(xué)習(xí)中,會(huì)經(jīng)常遇到畫(huà)平行線的問(wèn)題.方法為:一“落”(三角板的一邊落在已知直線上),二“靠”(用直尺緊靠三角板的另一邊),三“移”(沿直尺移動(dòng)三角板,直至落在已知直線上的三角板的一邊經(jīng)過(guò)已知點(diǎn)),四“畫(huà)”(沿三角板過(guò)已知點(diǎn)的邊畫(huà)直線).

        四、平行公理

        1.利用前面的教具,說(shuō)明“過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行”.

        2.平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行.

        提問(wèn)垂線的性質(zhì),并進(jìn)行比較.

        3.平行公理推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.即:如果b∥a,c∥a,那么b∥c.

        五、三線八角

        由前面的教具演示引出.

        如圖,直線a,b被直線c所截,形成的8個(gè)角中,其中同位角有4對(duì),內(nèi)錯(cuò)角有2對(duì),同旁?xún)?nèi)角有2對(duì).

        六、課堂練習(xí)

        1.在同一平面內(nèi),兩條直線可能的位置關(guān)系是 .

        2.在同一平面內(nèi),三條直線的交點(diǎn)個(gè)數(shù)可能是 .

        3.下列說(shuō)法正確的是( )

        A.經(jīng)過(guò)一點(diǎn)有且只有一條直線與已知直線平行

        B.經(jīng)過(guò)一點(diǎn)有無(wú)數(shù)條直線與已知直線平行

        C.經(jīng)過(guò)一點(diǎn)有一條直線與已知直線平行

        D.經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行

        4.若∠ 與∠ 是同旁?xún)?nèi)角,且∠ =50°,則∠ 的度數(shù)是( )

        A.50° B.130° C.50°或130° D.不能確定

        5.下列命題:(1)長(zhǎng)方形的對(duì)邊所在的直線平行;(2)經(jīng)過(guò)一點(diǎn)可作一條直線與已知直線平行;(3)在同一平面內(nèi),如果兩條直線不平行,那么這兩條直線相交;(4)經(jīng)過(guò)一點(diǎn)可作一條直線與已知直線垂直.其中正確的個(gè)數(shù)是( )

        A.1 B.2 C.3 D.4

        6.如圖,直線AB,CD被DE所截,則∠1和 是同位角,∠1和 是內(nèi)錯(cuò)角,∠1和 是同旁?xún)?nèi)角.如果∠5=∠1,那么∠1 ∠3.

        七、小結(jié)

        讓學(xué)生獨(dú)立總結(jié)本節(jié)內(nèi)容,敘述本節(jié)的概念和結(jié)論.

        八、課后作業(yè)

        1.教材P19第7題;

        2.畫(huà)圖說(shuō)明在同一平面內(nèi)三條直線的位置關(guān)系及交點(diǎn)情況.

        [補(bǔ)充內(nèi)容]

        1.試說(shuō)明,如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.

        2.在同一平面內(nèi),兩條直線的位置關(guān)系僅有兩種:相交或平行.但現(xiàn)實(shí)空間是立體的,

        試想一想在空間中,兩條直線會(huì)有哪些位置關(guān)系呢?(用長(zhǎng)方體來(lái)說(shuō)明)

        5.2.2 直線平行的條件 (第2課時(shí))

        一.教學(xué)目標(biāo)

        (1) 使學(xué)生進(jìn)一步理解并掌握判定兩條直線平行的方法;

        (2) 了解簡(jiǎn)單的邏輯推理過(guò)程.

        二.教學(xué)重點(diǎn)與難點(diǎn)

        重點(diǎn):判定兩條直線平行方法的應(yīng)用;

        難點(diǎn):簡(jiǎn)單的邏輯推理過(guò)程.

        三.教學(xué)過(guò)程

        復(fù)習(xí)提問(wèn):

        1.判定兩條直線平行的方法有哪些?

        2.如圖(1)

        (1) 如果∠1=∠4,根據(jù)_________________,可得AB∥CD;

        (2) 如果∠1=∠2,根據(jù)_________________,可得AB∥CD;

        (3) 如果∠1+∠3=1800,根據(jù)______________,可得AB∥CD .

        3.如圖(2)

        (1) 如果∠1=∠D,那么______∥________;

        (2) 如果∠1=∠B,那么______∥________;

        (3) 如果∠A+∠B=1800,那么______∥________;

        (4) 如果∠A+∠D=1800,那么______∥________;

        新課:

        例1 在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?

        分析:垂直總與直角聯(lián)系在一起,我們學(xué)過(guò)哪些判斷兩條直線平行的方法?

        答:這兩條直線平行.

        如圖所示

        理由如下: ∵b⊥a,c⊥a

        ∴∠1=∠2=900(垂直定義)

        ∴b∥c(同位角相等,兩直線平行)

        思考:

        這是小明同學(xué)自己制作的英語(yǔ)抄寫(xiě)紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?

        例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.

        (1) 求∠2的度數(shù);

        (2) FC與AD平行嗎?為什么?

        鞏固練習(xí)

        1. 教科書(shū)19頁(yè)練習(xí)

        2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?

        3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問(wèn)ED與CF平行嗎?

        4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.

        作業(yè):教科書(shū)19頁(yè)習(xí)題5.2第7、8題

        5.2.2直線平行的條件(一)

        [教學(xué)目標(biāo)]

        3. 借助用直尺和三角板畫(huà)平行線的過(guò)程,,得出直線平行的條件.

        4. 會(huì)用直線平行的條件來(lái)判定直線平行.

        5. 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

        [教學(xué)重點(diǎn)與難點(diǎn)]

        重點(diǎn): 理解直線平行的條件.

        難點(diǎn): 直線平行的條件的應(yīng)用

        [教學(xué)設(shè)計(jì)]提問(wèn)

        復(fù)習(xí)題:

        1.如圖,已知四條直線AB、AC、DE、FG

        (1)∠1與∠2是直線_____和直線____被直線________所截而成的________角.

        (2) ∠3與∠2是直線_____和直線____被直線________所截而成的________角.

        (3) ∠5與∠6是直線_____和直線____被直線________所截而成的________角.

        (4) ∠4與∠7是直線_____和直線____被直線________所截而成的________角.

        (5) ∠8與∠2是直線_____和直線____被直線________所截而成的________角.

        2.下面說(shuō)法中正確的是 ( ).

        (1) 在同一平面內(nèi),兩條直線的位置關(guān)系有相交、平行、垂直三種

        (2) 在同一平面內(nèi), 不垂直的兩條直線必平行

        (3) 在同一平面內(nèi), 不平行的兩條直線必垂直

        (4) 在同一平面內(nèi),不相交的兩條直線一定不垂直

        3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.

        導(dǎo)言:

        上節(jié)課我們學(xué)習(xí)了平行線的意義, 在同一平面內(nèi),兩條直線的位置關(guān)系,以及平行公理,

        在此基礎(chǔ)上,我們?cè)賮?lái)研究直線平行的條件.

        新課:

        直線平行的條件

        演示用直尺和三角板畫(huà)平行線的過(guò)程,

        如果∠4+∠2=180°, a∥ b嗎?

        三種方法可以簡(jiǎn)單地說(shuō)成:

        例題 已知:如圖,直線AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,試說(shuō)明CD ∥EF.

        解:因?yàn)?ang;1=∠2,

        所以 AB ∥CD.

        又因?yàn)?∠3+∠1=180°,

        所以 AB ∥ EF.

        從而 CD ∥EF (為什么?).

        課堂練習(xí):

        1.下列判斷正確的是 ( ).

        A. 因?yàn)?ang;1和∠2是同旁?xún)?nèi)角,所以∠1+∠2=180°

        B. 因?yàn)?ang;1和∠2是內(nèi)錯(cuò)角,所以∠1=∠2

        C. 因?yàn)?ang;1和∠2是同位角,所以∠1=∠2

        D. 因?yàn)?ang;1和∠2是補(bǔ)角,所以∠1+∠2=180°

        2.如圖:(1) 已知∠1=65°, ∠2=65°,那么DE與 BC平行嗎?為什么?

        (2)如果∠1=65°, ∠3=115°,那么AB與DF平行嗎?

        為什么?

        (3) )如果∠4=60°, ∠2=65°,那么DE與BC平行嗎?

        為什么?

        3.

        4.如圖所示:

        (1)如果已知∠1=∠3,則可判定AB∥______,其理由是__________________;

        (2)如果已知∠4+∠5=180°,則可判定___________∥______,其理由是__________________;

        (3)如果已知∠1+∠2=180°,則可判定___________∥______,其理由是__________________;

        (4)如果已知∠5+∠2=180°那么根據(jù)對(duì)頂角相等有∠2=__,

        因此可知∠4+∠5= ____,所以可確定 ___________∥______,其理由是__________________;

        (5)如果已知∠1=∠6,則可判定_____∥______,其理由是__________________.

        第4題圖 第5題圖

        5.如圖,(1)如果∠1=________,那么DE∥ AC;

        (2) 如果∠1=________,那么EF∥ BC;

        (3)如果∠FED+ ∠________=180°,那么AC∥ED;

        (4) 如果∠2+ ∠________=180°,那么AB∥DF.

        6.

        7.

        課后作業(yè):習(xí)題5.2 第1,2,4題.

        補(bǔ)充練習(xí):

        已知:如圖,AB ∥CD,EF分別交 AB、CD

        于 E、F,EG平分∠ AEF ,

        FH平分∠ EFD EG與 FH平行嗎?為什么?

        初中數(shù)學(xué)新課程教學(xué)

        一、使課題的引入更具有趣味性

        人的感情是非常豐富的,風(fēng)趣幽默的話能給人留下深刻的印象,也會(huì)使得課堂充滿(mǎn)生機(jī)。比如,教授整式加減的時(shí)候,教師可先給學(xué)生講個(gè)笑話:“王阿姨家養(yǎng)了3只羊和9頭豬,小軍卻數(shù)出12頭豬,同學(xué)們知道是什么原因嗎?”聽(tīng)完后,學(xué)生都會(huì)笑著回答:“那是因?yàn)樗蜒蚪o數(shù)上了。”學(xué)生為什么會(huì)笑呢?那是因?yàn)樗麄冎镭i與羊是不同種類(lèi),不能這樣將數(shù)量相加。此時(shí),教師可以導(dǎo)入授課的重點(diǎn),即合并同類(lèi)項(xiàng)就是不同類(lèi)的事物不能合并。這樣的教學(xué)方法不但活躍了課堂氣氛,還加深了學(xué)生對(duì)于同類(lèi)項(xiàng)的理解,可謂一舉兩得。

        二、建立平等的師生關(guān)系

        古人曰:“親其師,信其道。”這就是要求教師能夠摒棄師道為大的舊俗,和學(xué)生建立一種人格上的平等,走到學(xué)生的身旁,走進(jìn)學(xué)生的心里,和學(xué)生進(jìn)行平等的交流;和學(xué)生一起探索、討論,激勵(lì)學(xué)生積極思考、選擇、提問(wèn),積極參與他們的自由交流;和學(xué)生建立一種友好的關(guān)系,讓學(xué)生不再抗拒教師。如果建立起這種新型的師生關(guān)系,課堂教學(xué)就能在一種輕松、和諧的氛圍內(nèi)進(jìn)行與完成。要想在師生之間建立起互動(dòng)性的關(guān)系,教師不僅要在備課的時(shí)候,考慮學(xué)生的生活實(shí)際與知識(shí)狀況,還要考慮怎樣使學(xué)生通過(guò)自己的學(xué)習(xí)獲得相關(guān)的技能。此外,教師還應(yīng)在課堂上尊重每一位學(xué)生,讓學(xué)生能夠主動(dòng)探索、大膽提問(wèn),鼓勵(lì)學(xué)生主動(dòng)探討解決問(wèn)題的辦法,并在學(xué)生需要的時(shí)候參加學(xué)生的學(xué)習(xí)活動(dòng),給予學(xué)生必要的指導(dǎo),與學(xué)生成為學(xué)習(xí)伙伴、知心朋友。

        三、設(shè)置問(wèn)題的層次性

        數(shù)學(xué)教學(xué)的核心就是問(wèn)題。教師在設(shè)置問(wèn)題時(shí)不僅要考慮到學(xué)生的認(rèn)知水平,還要考慮知識(shí)本身所具有的特征。如果設(shè)置的問(wèn)題過(guò)大,會(huì)使得學(xué)生思考邊際過(guò)大,甚至?xí)箤W(xué)習(xí)困難的學(xué)生缺乏信心。但如果設(shè)置的問(wèn)題過(guò)小,又會(huì)缺乏思考的價(jià)值,不利于學(xué)生的全面發(fā)展。所以,教師在備課的時(shí)候要想好該如何設(shè)置難度適宜的問(wèn)題,讓大部分學(xué)生在層層深入的問(wèn)題里清楚了解知識(shí)點(diǎn)。比如,在講授根與系數(shù)關(guān)系的時(shí)候,我首先給出4個(gè)方程式:①x2-5x-6=0;②x2+3x+2=0;③x2-x-6=0;④x2-3x+7=0。然后,我要求學(xué)生分別求出a、b、c的值,并解方程求出每個(gè)方程式的兩根之和與積。學(xué)生很快就發(fā)現(xiàn)方程式④不能求出答案。這是什么原因造成呢?因?yàn)椤?lt;0,所以方程無(wú)解。然后,我讓學(xué)生觀察前3個(gè)方程式兩根之和、兩根之積和原來(lái)方程式a、b、c的關(guān)系。學(xué)生很容易就發(fā)現(xiàn):當(dāng)二次系數(shù)a=1時(shí),兩根之和恰好是一次系數(shù)b的相反數(shù),而兩根之積也為常數(shù)項(xiàng)。此時(shí),我再給出方程式2x2-6x-7=0,學(xué)生就懂得按照等式的基本性質(zhì),將二次系數(shù)變成1再進(jìn)行解答,這樣就能將特殊轉(zhuǎn)化成一般。

        四、訓(xùn)練多樣性的思維模式

        1.訓(xùn)練思維速度。這主要是在課堂上進(jìn)行訓(xùn)練的。因此,教師應(yīng)合理安排課堂的教學(xué)內(nèi)容,運(yùn)用形象生動(dòng)的教學(xué)模式來(lái)訓(xùn)練學(xué)生的思維速度,從而提高數(shù)學(xué)的教學(xué)質(zhì)量。例如,在講授新課后,教師要安排教材中的練習(xí)作為檢查的速算題。教師也可精心編寫(xiě)概念性強(qiáng)、靈活性高、覆蓋面廣的選擇、判斷、簡(jiǎn)答題等,開(kāi)展專(zhuān)項(xiàng)訓(xùn)練,從而提高學(xué)生快速答題的能力。

        2.訓(xùn)練思維質(zhì)量。教師可充分組織學(xué)生對(duì)于某些解題思路、解題方法的特點(diǎn)等展開(kāi)討論。這樣有助于學(xué)生主動(dòng)積極思考,從而能有效提高其分析、解決問(wèn)題的能力。

        3.訓(xùn)練逆向思維。啟迪學(xué)生從相反的角度思考問(wèn)題,培養(yǎng)起逆向思考問(wèn)題的習(xí)慣,這樣有助于拓展學(xué)生的思路,找到解決問(wèn)題的方法,有效培養(yǎng)學(xué)生的思維能力。

        4.訓(xùn)練發(fā)散思維。這可以充分調(diào)動(dòng)起學(xué)生的求知欲與好奇心,讓學(xué)生自己進(jìn)行獨(dú)立的思考,不斷探索新的知識(shí),并盡自己最大的能力去解決問(wèn)題。在課堂教學(xué)中,教師要以打破問(wèn)題為起點(diǎn),講結(jié)論作為重點(diǎn)的封閉式教學(xué),重新構(gòu)造出一種以探究為關(guān)鍵的開(kāi)放式教學(xué)模式。

        五、結(jié)題

        總而言之,只要教師努力實(shí)踐,認(rèn)真思考,在數(shù)學(xué)教學(xué)中不斷前行,堅(jiān)持新課程的理念,并以此引導(dǎo)課堂教學(xué),借助各種教學(xué)手段,就能使學(xué)生積極參與教學(xué)活動(dòng),讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,從而大大增加學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性與主動(dòng)性。

        作者:李全元 單位:甘肅省張掖市第五中學(xué)

        看了“七年級(jí)數(shù)學(xué)下冊(cè)教學(xué)設(shè)計(jì)”的人還看了:

      1.新人教版七年級(jí)數(shù)學(xué)下冊(cè)教案免費(fèi)下載

      2.七年級(jí)數(shù)學(xué)上教學(xué)設(shè)計(jì)

      3.七年級(jí)上冊(cè)數(shù)學(xué)教學(xué)設(shè)計(jì)

      4.新人教版七年級(jí)數(shù)學(xué)下冊(cè)教案全冊(cè)

      5.人教版七年級(jí)數(shù)學(xué)上冊(cè)教學(xué)設(shè)計(jì)

      七年級(jí)數(shù)學(xué)下冊(cè)教學(xué)設(shè)計(jì)

      教學(xué)設(shè)計(jì)代表著七年級(jí)數(shù)學(xué)教師對(duì)課堂的假設(shè)與預(yù)想,以下是學(xué)習(xí)啦小編為大家整理的七年級(jí)數(shù)學(xué)下冊(cè)教學(xué)設(shè)計(jì),希望你們喜歡。 七年級(jí)數(shù)學(xué)下教學(xué)設(shè)計(jì) 5.1相交線 [教學(xué)目標(biāo)] 1. 通過(guò)動(dòng)手、操作、推斷、交流等活動(dòng),進(jìn)一步發(fā)展空間觀念,培養(yǎng)識(shí)
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式
      2473225