高一數(shù)學(xué)冪函數(shù)練習(xí)題
高一數(shù)學(xué)冪函數(shù)練習(xí)題
冪函數(shù)是基本初等函數(shù)之一,是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念與函數(shù)性質(zhì)之后,全面掌握有理數(shù)冪和根式的基礎(chǔ)上來研究的一種特殊函數(shù)。下面是學(xué)習(xí)啦小編給大家?guī)淼母咭粩?shù)學(xué)冪函數(shù)練習(xí)題及答案解析,希望對(duì)你有幫助。
數(shù)學(xué)冪函數(shù)練習(xí)題及答案解析
1.下列冪函數(shù)為偶函數(shù)的是( )
A.y=x12 B.y=3x
C.y=x2 D.y=x-1
解析:選C.y=x2,定義域?yàn)镽,f(-x)=f(x)=x2.
2.若a<0,則0.5a,5a,5-a的大小關(guān)系是( )
A.5-a<5a<0.5a B.5a<0.5a<5-a
C.0.5a<5-a<5a D.5a<5-a<0.5a
解析:選B.5-a=(15)a,因?yàn)閍<0時(shí)y=xa單調(diào)遞減,且15<0.5<5,所以5a<0.5a<5-a.
3.設(shè)α∈{-1,1,12,3},則使函數(shù)y=xα的定義域?yàn)镽,且為奇函數(shù)的所有α值為( )
A.1,3 B.-1,1
C.-1,3 D.-1,1,3
解析:選A.在函數(shù)y=x-1,y=x,y=x12,y=x3中,只有函數(shù)y=x和y=x3的定義域是R,且是奇函數(shù),故α=1,3.
4.已知n∈{-2,-1,0,1,2,3},若(-12)n>(-13)n,則n=________.
解析:∵-12<-13,且(-12)n>(-13)n,
∴y=xn在(-∞,0)上為減函數(shù).
又n∈{-2,-1,0,1,2,3},
∴n=-1或n=2.
答案:-1或2
1.函數(shù)y=(x+4)2的遞減區(qū)間是( )
A.(-∞,-4) B.(-4,+∞)
C.(4,+∞) D.(-∞,4)
解析:選A.y=(x+4)2開口向上,關(guān)于x=-4對(duì)稱,在(-∞,-4)遞減.
2.冪函數(shù)的圖象過點(diǎn)(2,14),則它的單調(diào)遞增區(qū)間是( )
A.(0,+∞) B.[0,+∞)
C.(-∞,0) D.(-∞,+∞)
解析:選C.
冪函數(shù)為y=x-2=1x2,偶函數(shù)圖象如圖.
3.給出四個(gè)說法:
?、佼?dāng)n=0時(shí),y=xn的圖象是一個(gè)點(diǎn);
?、趦绾瘮?shù)的圖象都經(jīng)過點(diǎn)(0,0),(1,1);
③冪函數(shù)的圖象不可能出現(xiàn)在第四象限;
?、軆绾瘮?shù)y=xn在第一象限為減函數(shù),則n<0.
其中正確的說法個(gè)數(shù)是( )
A.1 B.2
C.3 D.4
解析:選B.顯然①錯(cuò)誤;②中如y=x-12的圖象就不過點(diǎn)(0,0).根據(jù)冪函數(shù)的圖象可知③、④正確,故選B.
4.設(shè)α∈{-2,-1,-12,13,12,1,2,3},則使f(x)=xα為奇函數(shù)且在(0,+∞)上單調(diào)遞減的α的值的個(gè)數(shù)是( )
A.1 B.2
C.3 D.4
解析:選A.∵f(x)=xα為奇函數(shù),
∴α=-1,13,1,3.
又∵f(x)在(0,+∞)上為減函數(shù),
∴α=-1.
5.使(3-2x-x2)-34有意義的x的取值范圍是( )
A.R B.x≠1且x≠3
C.-3
解析:選C.(3-2x-x2)-34=143-2x-x23,
∴要使上式有意義,需3-2x-x2>0,
解得-3
6.函數(shù)f(x)=(m2-m-1)xm2-2m-3是冪函數(shù),且在x∈(0,+∞)上是減函數(shù),則實(shí)數(shù)m=( )
A.2 B.3
C.4 D.5
解析:選A.m2-m-1=1,得m=-1或m=2,再把m=-1和m=2分別代入m2-2m-3<0,經(jīng)檢驗(yàn)得m=2.
7.關(guān)于x的函數(shù)y=(x-1)α(其中α的取值范圍可以是1,2,3,-1,12)的圖象恒過點(diǎn)________.
解析:當(dāng)x-1=1,即x=2時(shí),無論α取何值,均有1α=1,
∴函數(shù)y=(x-1)α恒過點(diǎn)(2,1).
答案:(2,1)
8.已知2.4α>2.5α,則α的取值范圍是________.
解析:∵0<2.4<2.5,而2.4α>2.5α,∴y=xα在(0,+∞)為減函數(shù).
答案:α<0
9.把(23)-13,(35)12,(25)12,(76)0按從小到大的順序排列____________________.
解析:(76)0=1,(23)-13>(23)0=1,
(35)12<1,(25)12<1,
∵y=x12為增函數(shù),
∴(25)12<(35)12<(76)0<(23)-13.
答案:(25)12<(35)12<(76)0<(23)-13
10.求函數(shù)y=(x-1)-23的單調(diào)區(qū)間.
解:y=(x-1)-23=1x-123=13x-12,定義域?yàn)閤≠1.令t=x-1,則y=t-23,t≠0為偶函數(shù).
因?yàn)?alpha;=-23<0,所以y=t-23在(0,+∞)上單調(diào)遞減,在(-∞,0)上單調(diào)遞增.又t=x-1單調(diào)遞增,故y=(x-1)-23在(1,+∞)上單調(diào)遞減,在(-∞,1)上單調(diào)遞增.
11.已知(m+4)-12<(3-2m)-12,求m的取值范圍.
解:∵y=x-12的定義域?yàn)?0,+∞),且為減函數(shù).
∴原不等式化為m+4>03-2m>0m+4>3-2m,
解得-13
∴m的取值范圍是(-13,32).
12.已知冪函數(shù)y=xm2+2m-3(m∈Z)在(0,+∞)上是減函數(shù),求y的解析式,并討論此函數(shù)的單調(diào)性和奇偶性.
解:由冪函數(shù)的性質(zhì)可知
m2+2m-3<0⇒(m-1)(m+3)<0⇒-3
又∵m∈Z,∴m=-2,-1,0.
當(dāng)m=0或m=-2時(shí),y=x-3,
定義域是(-∞,0)∪(0,+∞).
∵-3<0,
∴y=x-3在(-∞,0)和(0,+∞)上都是減函數(shù),
又∵f(-x)=(-x)-3=-x-3=-f(x),
∴y=x-3是奇函數(shù).
當(dāng)m=-1時(shí),y=x-4,定義域是(-∞,0)∪(0,+∞).
∵f(-x)=(-x)-4=1-x4=1x4=x-4=f(x),
∴函數(shù)y=x-4是偶函數(shù).
∵-4<0,∴y=x-4在(0,+∞)上是減函數(shù),
又∵y=x-4是偶函數(shù),
∴y=x-4在(-∞,0)上是增函數(shù).