初二數(shù)學(xué)部編版知識點總結(jié)
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學(xué)習(xí)任何學(xué)科,不僅需要大量的記憶,還需要大量的練習(xí),從而達到鞏固知識的效果。下面是小編給大家整理的一些初二數(shù)學(xué)的知識點,希望對大家有所幫助。
初二上學(xué)期數(shù)學(xué)知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質(zhì):
(1)三角形的內(nèi)角和:三角形的內(nèi)角和為180°
(2)三角形外角的性質(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
(3)多邊形內(nèi)角和公式:邊形的內(nèi)角和等于?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數(shù):①從邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標(biāo)
1、確定位置
在平面內(nèi),確定一個物體的位置一般需要兩個數(shù)據(jù)。
2、平面直角坐標(biāo)系
①含義:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標(biāo)系。
②通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點o被稱為直角坐標(biāo)系的原點。
③建立了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一組有序?qū)崝?shù)對來表示。
④在平面直角坐標(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點不在任何一個象限。
⑤在直角坐標(biāo)系中,對于平面上任意一點,都有的一個有序?qū)崝?shù)對(即點的坐標(biāo))與它對應(yīng);反過來,對于任意一個有序?qū)崝?shù)對,都有平面上的一點與它對應(yīng)。
3、軸對稱與坐標(biāo)變化
關(guān)于x軸對稱的兩個點的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的兩個點的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。
八年級上冊數(shù)學(xué)知識點
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點O稱為直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標(biāo)軸上的點),不屬于任何一個象限。
3、點的坐標(biāo)的概念
對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點P的坐標(biāo)。
點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。
平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點的坐標(biāo)的特征
(1)、各象限內(nèi)點的坐標(biāo)的特征
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標(biāo)軸上的點的特征
點P(x,y)在x軸上,y=0,x為任意實數(shù)
點P(x,y)在y軸上,x=0,y為任意實數(shù)
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標(biāo)為(0,0)即原點
(3)、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
初二數(shù)學(xué)復(fù)習(xí)方法
(一)、整理本學(xué)期學(xué)過的知識與方法:1.第一、七章是幾何部分。這三章的重點是勾股定理的應(yīng)用以及平行線的性質(zhì)與判別還有三角形內(nèi)角和定理及其應(yīng)用。所以記住性質(zhì)是關(guān)鍵,學(xué)會判定是重點,靈活應(yīng)用是目的。要學(xué)會判定方法的選擇,不同圖形之間的區(qū)別和聯(lián)系要非常熟悉,形成一個有機整體。對常見的證明題要多練多總結(jié)。2.第四五六章主要是概念的教學(xué),對這幾章的考試題型學(xué)生可能都不熟悉,所以要以與課本同步的訓(xùn)練題型為主,要列表或作圖的,讓學(xué)生積極動手操作,并得出結(jié)論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學(xué)生自己總結(jié)出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質(zhì)、方法綜合復(fù)習(xí),加入適當(dāng)?shù)木毩?xí),在練習(xí)計算。課堂上逐一對易錯題的講解,多強調(diào)解題方法的針對性。最后針對平時練習(xí)中存在的問題,查漏補缺。
(二)、在自己經(jīng)歷過的解決問題活動中,選擇一個有挑戰(zhàn)問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,并選擇這個問題的原因。
(三)、通過本學(xué)期的數(shù)學(xué)學(xué)習(xí),讓同學(xué)們總結(jié)自己有哪些收獲;有哪些需要改進的地方。
初二數(shù)學(xué)部編版知識點總結(jié)相關(guān)文章: