亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦>學習方法>初中學習方法>初二學習方法>八年級數(shù)學>

      數(shù)學初二必背的知識點

      時間: 舒淇4599 分享

      數(shù)學源自古希臘語,是研究數(shù)量、結構、變化、空間以及信息等概念的一門學科。下面小編為大家?guī)頂?shù)學初二必背的知識點,歡迎大家參考閱讀,希望大家喜歡!

      數(shù)學初二必背的知識點

      第一章勾股定理

      1、探索勾股定理

      ①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

      2、一定是直角三角形嗎

      ①如果三角形的三邊長a b c滿足a2+b2=c2,那么這個三角形一定是直角三角形

      3、勾股定理的應用

      第二章實數(shù)

      1、認識無理數(shù)

      ①有理數(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示

      ②無理數(shù):無限不循環(huán)小數(shù)

      2、平方根

      ①算數(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算數(shù)平方根

      ②特別地,我們規(guī)定:0的算數(shù)平方根是0

      ③平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a。那么這個數(shù)x就叫做a的平方根,也叫做二次方根

      ④一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負數(shù)沒有平方根

      ⑤正數(shù)有兩個平方根,一個是a的算數(shù)平方,另一個是—,它們互為相反數(shù),這兩個平方根合起來可記作±

      ⑥開平方:求一個數(shù)a的平方根的運算叫做開平方,a叫做被開方數(shù)

      3、立方根

      ①立方根:一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a的立方根,也叫三次方根

      ②每個數(shù)都有一個立方根,正數(shù)的立方根是正數(shù);0立方根是0;負數(shù)的立方根是負數(shù)。

      ③開立方:求一個數(shù)a的立方根的運算叫做開立方,a叫做被開方數(shù)

      4、估算

      ①估算,一般結果是相對復雜的小數(shù),估算有精確位數(shù)

      5、用計算機開平方

      6、實數(shù)

      ①實數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱

      ②實數(shù)也可以分為正實數(shù)、0、負實數(shù)

      ③每一個實數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個點都對應一個實數(shù),在數(shù)軸上,右邊的點永遠比左邊的點表示的數(shù)大

      7、二次根式

      ①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)

      ② =(a≥0,b≥0),=(a≥0,b>0)

      ③最簡二次根式:一般地,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡二次根式

      ④化簡時,通常要求最終結果中分母不含有根號,而且各個二次根式時最簡二次根式

      第三章位置與坐標

      1、確定位置

      ①在平面內,確定一個物體的位置一般需要兩個數(shù)據(jù)

      2、平面直角坐標系

      ①含義:在平面內,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系

      ②通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點

      ③建立了平面直角坐標系,平面內的點就可以用一組有序實數(shù)對來表示

      ④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限

      ⑤在直角坐標系中,對于平面上任意一點,都有唯一的一個有序實數(shù)對(即點的坐標)與它對應;反過來,對于任意一個有序實數(shù)對,都有平面上唯一的一點與它對應

      3、軸對稱與坐標變化

      ①關于x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數(shù)

      第四章一次函數(shù)

      1、函數(shù)

      ①一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應,那么我們稱y是x的函數(shù)其中x是自變量

      ②表示函數(shù)的方法一般有:列表法、關系式法和圖象法

      ③對于自變量在可取值范圍內的一個確定的值a,函數(shù)有唯一確定的對應值,這個對應值稱為當自變量等于a的函數(shù)值

      2、一次函數(shù)與正比例函數(shù)

      ①若兩個變量x,y間的對應關系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當b=0時,稱y是x的正比例函數(shù)

      3、一次函數(shù)的圖像

      ①正比例函數(shù)y=kx的圖像是一條經(jīng)過原點(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點,過這個點與原點畫直線就可以了

      ②在正比例函數(shù)y=kx中,當k>0時,y的值隨著x值的增大而減小;當k<0時,y的值隨著x的值增大而減小

      ③一次函數(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時,只要確定兩個點,再過這兩點畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

      ④一次函數(shù)y=kx+b的圖像經(jīng)過點(0,b)。當k>0時,y的值隨著x值的增大而增大;當k<0時,y的值隨著x值的增大而減小

      4、一次函數(shù)的應用

      ①一般地,當一次函數(shù)y=kx+b的函數(shù)值為0時,相應的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點的橫坐標就是方程kx+b=0

      第五章二元一次方程組

      1、認識二元一次方程組

      ①含有兩個未知數(shù),并且所含有未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程

      ②共含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組

      ③二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解

      2、求解二元一次方程組

      ①將其中一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法

      ②通過兩式子加減,消去其中一個未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法

      3、應用二元一次方程組

      ①雞兔同籠

      4、應用二元一次方程組

      ①增減收支

      5、應用二元一次方程組

      ①里程碑上的數(shù)

      6、二元一次方程組與一次函數(shù)

      ①一般地,以一個二元一次方程的解為坐標的點組成的圖像與相應的一次函數(shù)的圖像相同,是一條直線

      ②一般地,從圖形的角度看,確定兩條直線相交點的坐標,相當于求相應的二元一次方程組的解,解一個二元一次方程組相當于確定相應兩條直線交點的坐標

      7、用二元一次方程組確定一次函數(shù)表達式

      ①先設出函數(shù)表達式,再根據(jù)所給條件確定表達式中未知的系數(shù),從而得到函數(shù)表達式的方法,叫做待定系數(shù)法。

      8、三元一次方程組

      ①在一個方程組中,各個式子都含有三個未知數(shù),并且所含有未知數(shù)的項的次數(shù)都是1,這樣的方程叫做三元一次方程

      ②像這樣,共含有三個未知數(shù)的三個一次方程所組成的一組方程,叫做三元一次方程組

      ③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解。

      第六章數(shù)據(jù)的分析

      1、平均數(shù)

      ①一般地,對于n個數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。

      ②在實際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權,叫做加權平均數(shù)

      2、中位數(shù)與眾數(shù)

      ①中位數(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

      ②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

      ③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量

      ④計算平均數(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。

      ⑤中位數(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

      ⑥各個數(shù)據(jù)重復次數(shù)大致相等時,眾數(shù)往往沒有特別意義

      3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢

      4、數(shù)據(jù)的離散程度

      ①實際生活中,除了關心數(shù)據(jù)的集中趨勢外,人們還關注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量

      ②數(shù)學上,數(shù)據(jù)的離散程度還可以用方差或標準差刻畫

      ③方差是各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

      ④其中是x1x2......xn平均數(shù),s2是方差,而標準差就是方差的算術平方根

      ⑤一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。

      第七章平行線的證明

      1、為什么要證明

      ①實驗、觀察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個數(shù)學結論是否正確,僅僅依靠實驗、觀察、歸納是不夠的,必須進行有根有據(jù)的證明

      2、定義與命題

      ①證明時,為了交流方便,必須對某些名稱和術語形成共同的認識,為此,就要對名稱和術語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

      ②判斷一件事情的句子,叫做命題

      ③一般地,每個命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通??梢詫懗伞叭绻?...那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結論

      ④正確的命題稱為真命題,不正確的命題稱為假命題

      ⑤要說明一個命題是假命題,常??梢耘e出一個例子,使它具備命題的條件,而不具有命題的結論,這種例子稱為反例

      ⑥歐幾里得在編寫《原本》時,挑選了一部分數(shù)學名詞和一部分公認的真命題作為證實其他命題的出發(fā)點和依據(jù)。其中數(shù)學名詞稱為原名,公認的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進行判斷

      ⑦演繹推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個定理都只能用公理、定義和已經(jīng)證明為真的命題來證明

      a.本套教科書選用九條基本事實作為證明的出發(fā)點和依據(jù),其中八條是:兩點確定一條直線

      b.兩點之間線段最短

      c.同一平面內,過一點有且只有一條直線與已知直線垂直

      d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)

      e.過直線外一點有且只有一條直線與這條直線平行

      f.兩邊及其夾角分別相等的兩個三角形全等

      g.兩角及其夾邊分別相等的兩個三角形全等

      h.三邊分別相等的兩個三角形全等

      ⑧此外,數(shù)與式的運算律和運算法則、等式的有關性質,以及反映大小關系的有關性質都可以作為證明的依據(jù)

      ⑨ 定理:同角(等角)的補角相等

      同角(等角)的余角相等

      三角形的任意兩邊之和大于第三邊

      對頂角相等

      3、平行線的判定

      ① 定理:兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行,簡述為:內錯角相等,兩直線平行

      ② 定理:兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行,簡述為:同旁內角互補,兩直線平行。

      4、平行線的性質

      ① 定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等

      ② 定理:兩條平行直線被第三條直線所截,內錯角相等。簡述為:兩直線平行,內錯角相等

      ③ 定理:兩條平行直線被第三條直線所截,同旁內角互補。簡述為:兩直線平行,同旁內角互補

      ④ 定理:平行于同一條直線的兩條直線平行

      5、三角形內角和定理

      ① 三角形內角和定理:三角形的內角和等于180°

      ② 定理:三角形的一個外角等于和它不相鄰的兩個內角的和

      定理:三角形的一個外角大于任何一個和它不相鄰的內角

      ③ 我們通過三角形的內角和定理直接推導出兩個新定理。像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論,推論可以當定理使用。

      數(shù)學初二基礎知識點

      平方根與立方根知識點

      平方根:

      概括1:一般地,如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根(或二次方根)。就是說,如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。

      因為(±23)=529,所以±23是529的平方根。問:(1)16,49,100,1100都是正數(shù),它們有幾個平方根?平方根之間有什么關系?(2)0的平方根是什么?

      概括2:一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根。

      概括3:求一個數(shù)a(a≥0)的平方根的運算,叫做開平方。

      開平方運算是已知指數(shù)和冪求底數(shù)。平方與開平方互為逆運算。一個數(shù)可以是正數(shù)、負數(shù)或者是0,它的平方數(shù)只有一個,正數(shù)或負數(shù)的平方都是正數(shù),0的平方是0。但一個正數(shù)的平方根卻有兩個,這兩個數(shù)互為相反數(shù),0的平方根是0。負數(shù)沒有平方根。因為平方與開平方互為逆運算,因此我們可以通過平方運算來求一個數(shù)的平方根,也可以通過平方運算來檢驗一個數(shù)是不是另一個數(shù)的平方根。

      一、算術平方根的概念

      正數(shù)a有兩個平方根(表示為?根,表示為a。0的平方根也叫做0的算術平方根,因此0的算術平方根是0,即0?!笔撬阈g平方根的符號,a就表示a的算術平方根。a的意義有兩點:a,我們把其中正的平方根,叫做a的算術平方

      (1)被開方數(shù)a表示非負數(shù),即a≥0;

      (2)a也表示非負數(shù),即a≥0。也就是說,非負數(shù)的“算術”平方根是非負數(shù)。負數(shù)不存在算術平方根,即a<0時,a無意義。

      如:=3,8是64的算術平方根,6無意義。9既表示對9進行開平方運算,也表示9的正的平方根。

      二、平方根與算術平方根的區(qū)別在于

      ①定義不同;

      ②個數(shù)不同:一個正數(shù)有兩個平方根,而一個正數(shù)的算術平方根只有一個;③表示方法不同:正數(shù)a的平方根表示為?a,正數(shù)a的算術平方根表示為a;④取值范圍不同:正數(shù)的算術平方根一定是正數(shù),正數(shù)的平方根是一正一負.⑤0的平方根與算術平方根都是0.

      三、例題講解:

      例1、求下列各數(shù)的算術平方根:

      (1)100;

      (2)49;

      (3)0.8164

      注意:由于正數(shù)的算術平方根是正數(shù),零的算術平方根是零,可將它們概括成:非負數(shù)的算

      術平方根是非負數(shù),即當a≥0時,a≥0(當a<0時,a無意義)

      用幾何圖形可以直觀地表示算術平方根的意義如有一個面積為a(a應是非負數(shù))、邊長為

      的正方形就表示a的算術平方根。

      這里需要說明的是,算術平方根的符號“”不僅是一個運算符號,如a≥0時,a表示對非負數(shù)a進行開平方運算,另一方面也是一個性質符號,即表示非負數(shù)a的正的平方根。

      3、立方根

      (1)立方根的定義:如果一個數(shù)x的立方等于a,這個數(shù)叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

      (2)一個數(shù)a的立方根,讀作:“三次根號a”,其中a叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。

      (3)一個正數(shù)有一個正的立方根;0有一個立方根,是它本身;一個負數(shù)有一個負的立方根;任何數(shù)都有的立方根。

      (4)利用開立方和立方互為逆運算關系,求一個數(shù)的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數(shù)的立方根,可以先求出這個負數(shù)的絕對值的立方根,再取其相反數(shù)。

      數(shù)學初二知識點總結

      1全等三角形的對應邊、對應角相等

      2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

      3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

      4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

      5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

      6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

      7定理1在角的平分線上的點到這個角的兩邊的距離相等

      8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

      9角的平分線是到角的兩邊距離相等的所有點的集合

      10等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

      21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

      23推論3等邊三角形的各角都相等,并且每一個角都等于60°

      24等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      25推論1三個角都相等的三角形是等邊三角形

      26推論2有一個角等于60°的等腰三角形是等邊三角形

      27在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

      28直角三角形斜邊上的中線等于斜邊上的一半

      29定理線段垂直平分線上的點和這條線段兩個端點的距離相等

      30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

      數(shù)學初二必背的知識點相關文章

      初二上冊數(shù)學知識點歸納總結

      初二數(shù)學華師大版知識點2022

      初二所有數(shù)學公式歸納總結

      初中數(shù)學必背公式整理

      初中數(shù)學考試知識點總結歸納

      初中二元一次方程知識歸納

      初中數(shù)學知識點總結

      高中數(shù)學必背知識點

      2022初一數(shù)學必背知識點

      2022初中數(shù)學知識點復習提綱

      1589086