亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 >

      高二數(shù)學模擬大考的知識點

      時間: 贊銳20 分享

      高二是高中三年中最關鍵的一年,在開學之初希望同學們迅速適應新的環(huán)境,提升學習和精神兩個狀態(tài),養(yǎng)成良好的學習和生活習慣。以下是小編給大家整理的高二數(shù)學模擬大考的知識點,希望能助你一臂之力!

      高二數(shù)學模擬大考的知識點1

      直線、平面、簡單幾何體:

      1、學會三視圖的分析:

      2、斜二測畫法應注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

      (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

      (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側)面積與體積公式:

      ⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

      ⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

      ⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=

      ⑷球體:①表面積:S=;②體積:V=

      4、位置關系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角

      高二數(shù)學模擬大考的知識點2

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實數(shù)。

      反比例函數(shù)圖像性質:

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

      如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

      當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù)

      當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

      知識點:

      1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

      2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      高二數(shù)學模擬大考的知識點3

      導數(shù)是微積分中的`重要基礎概念。當函數(shù)=f(x)的自變量x在一點x0上產生一個增量Δx時,函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。

      導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。

      不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。

      對于可導的函數(shù)f(x),xf'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

      設函數(shù)=f(x)在點x0的某個鄰域內有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內時,相應地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當Δx→0時極限存在,則稱函數(shù)=f(x)在點x0處可導,并稱這個極限為函數(shù)=f(x)在點x0處的導數(shù)記為f'(x0),也記作'│x=x0或d/dx│x=x0


      高二數(shù)學模擬大考的知識點相關文章:

      高二數(shù)學考試必考知識點

      高二數(shù)學考試知識點

      高二數(shù)學知識點歸納總結

      高二數(shù)學??贾R點總結

      高二數(shù)學知識點2020總結

      高二數(shù)學知識點復習總結

      高二數(shù)學知識點總結

      高二數(shù)學知識點總結歸納

      2018高二數(shù)學會考知識點總結

      1079338