亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

      人教版高三數(shù)學(xué)的必學(xué)知識點

      時間: 贊銳0 分享

      扎扎實實,對每個知識點都要理解透徹,明確它們要求以及與其他知識之間的聯(lián)系。復(fù)習(xí)課的容量大、內(nèi)容多、時間緊。要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。以下是小編給大家整理的高三數(shù)學(xué)知識點,希望能幫助到大家!

      人教版高三數(shù)學(xué)的必學(xué)知識點1

      軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

      一、求動點的軌跡方程的基本步驟。

      1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);

      2.寫出點M的集合;

      3.列出方程=0;

      4.化簡方程為最簡形式;

      5.檢驗。

      二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

      1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

      2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

      3.相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

      4.參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

      5.交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

      求動點軌跡方程的一般步驟:

      ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

      ②設(shè)點——設(shè)軌跡上的任一點P(x,y);

      ③列式——列出動點p所滿足的關(guān)系式;

      ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

      ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

      人教版高三數(shù)學(xué)的必學(xué)知識點2

      隨機抽樣

      簡介

      (抽簽法、隨機樣數(shù)表法)常常用于總體個數(shù)較少時,它的主要特征是從總體中逐個抽取;

      優(yōu)點:操作簡便易行

      缺點:總體過大不易實行

      方法

      (1)抽簽法

      一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

      (抽簽法簡單易行,適用于總體中的個數(shù)不多時。當(dāng)總體中的個體數(shù)較多時,將總體“攪拌均勻”就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

      (2)隨機數(shù)法

      隨機抽樣中,另一個經(jīng)常被采用的方法是隨機數(shù)法,即利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進(jìn)行抽樣。

      分層抽樣

      簡介

      分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

      定義

      一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

      整群抽樣

      定義

      什么是整群抽樣

      整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

      應(yīng)用整群抽樣時,要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

      優(yōu)缺點

      整群抽樣的優(yōu)點是實施方便、節(jié)省經(jīng)費;

      整群抽樣的缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機抽樣。

      實施步驟

      先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內(nèi)所有個體或單元均進(jìn)行調(diào)查。抽樣過程可分為以下幾個步驟:

      一、確定分群的標(biāo)注

      二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

      三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。

      四、采用簡單隨機抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

      例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個班做統(tǒng)計;進(jìn)行產(chǎn)品檢驗;每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗等。

      與分層抽樣的區(qū)別

      整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

      分層抽樣要求各層之間的差異很大,層內(nèi)個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個體或單元差異大;

      分層抽樣的樣本是從每個層內(nèi)抽取若干單元或個體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

      系統(tǒng)抽樣

      定義

      當(dāng)總體中的個體數(shù)較多時,采用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。

      步驟

      一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:

      (1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學(xué)號、準(zhǔn)考證號、門牌號等;

      (2)確定分段間隔k,對編號進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時,取k=N/n;

      (3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);

      (4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進(jìn)行下去,直到獲取整個樣本。

      人教版高三數(shù)學(xué)的必學(xué)知識點3

      1、圓柱體:

      表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:

      表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

      3、正方體

      a-邊長,S=6a2,V=a3

      4、長方體

      a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

      5、棱柱

      S-底面積h-高V=Sh

      6、棱錐

      S-底面積h-高V=Sh/3

      7、棱臺

      S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

      8、擬柱體

      S1-上底面積,S2-下底面積,S0-中截面積

      h-高,V=h(S1+S2+4S0)/6

      9、圓柱

      r-底半徑,h-高,C—底面周長

      S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

      S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

      10、空心圓柱

      R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

      11、直圓錐

      r-底半徑h-高V=πr^2h/3

      12、圓臺

      r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

      13、球

      r-半徑d-直徑V=4/3πr^3=πd^3/6

      14、球缺

      h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

      15、球臺

      r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

      16、圓環(huán)體

      R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑

      V=2π2Rr2=π2Dd2/4

      17、桶狀體

      D-桶腹直徑d-桶底直徑h-桶高

      V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

      V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

      人教版高三數(shù)學(xué)的必學(xué)知識點相關(guān)文章

      人教版高三數(shù)學(xué)復(fù)習(xí)知識點

      人教版高三數(shù)學(xué)知識點總結(jié)

      人教版高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)

      高三數(shù)學(xué)必考知識點匯總

      人教版高三年級數(shù)學(xué)必考知識點

      人教版高中數(shù)學(xué)知識點提綱

      高三數(shù)學(xué)重要知識點整理

      人教版高三年級數(shù)學(xué)知識點總結(jié)

      高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)

      高三數(shù)學(xué)知識點考點總結(jié)大全

      人教版高三數(shù)學(xué)的必學(xué)知識點

      扎扎實實,對每個知識點都要理解透徹,明確它們要求以及與其他知識之間的聯(lián)系。復(fù)習(xí)課的容量大、內(nèi)容多、時間緊。要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。以下是小編給大家整理的高三數(shù)學(xué)知識點,希望能
      推薦度:
      點擊下載文檔文檔為doc格式
      1071617