亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

      2022高三數(shù)學(xué)知識(shí)點(diǎn)

      時(shí)間: 躍瀚1373 分享

      知識(shí)是取之不盡,用之不竭的。只有限度地挖掘它,才能體會(huì)到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識(shí)都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些高三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

      三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)

      考點(diǎn)一:向量的概念、向量的基本定理

      【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

      注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無法比較大小,它們的模可比較大小。

      考點(diǎn)二:向量的運(yùn)算

      【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

      【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

      考點(diǎn)三:定比分點(diǎn)

      【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來幫助理解。

      【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

      考點(diǎn)四:向量與三角函數(shù)的綜合問題

      【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

      【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

      考點(diǎn)五:平面向量與函數(shù)問題的交匯

      【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

      【命題規(guī)律】命題多以解答題為主,屬中檔題。

      考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

      【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.

      【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

      高三數(shù)學(xué)必修一知識(shí)點(diǎn)

      1.函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

      (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      2.復(fù)合函數(shù)的有關(guān)問題

      (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      3.函數(shù)圖像(或方程曲線的對(duì)稱性)

      (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

      (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

      4.函數(shù)的周期性

      (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

      (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

      (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

      (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

      (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

      (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

      5.方程

      (1)方程k=f(x)有解k∈D(D為f(x)的值域);

      (2)a≥f(x)恒成立a≥[f(x)]max,;

      a≤f(x)恒成立a≤[f(x)]min;

      (3)(a>0,a≠1,b>0,n∈R+);

      logaN=(a>0,a≠1,b>0,b≠1);

      (4)logab的符號(hào)由口訣“同正異負(fù)”記憶;

      alogaN=N(a>0,a≠1,N>0);

      高三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理

      (1)不等關(guān)系

      感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

      (2)一元二次不等式

      ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。

      ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

      ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。

      (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題

      ①?gòu)膶?shí)際情境中抽象出二元一次不等式組。

      ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

      ③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

      (4)基本不等式:

      ①探索并了解基本不等式的證明過程。

      ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問題。

      2022高三數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章

      2022高考物理知識(shí)點(diǎn)歸納總結(jié)

      2022高考物理知識(shí)點(diǎn)總結(jié)

      2022高考復(fù)習(xí)計(jì)劃大全5篇

      學(xué)習(xí)啦在線學(xué)習(xí)網(wǎng)

      2022高三班級(jí)復(fù)習(xí)計(jì)劃

      2022年高中生物重要的知識(shí)點(diǎn)

      2022高中數(shù)學(xué)教師工作計(jì)劃與安排

      2022高中數(shù)學(xué)教師工作計(jì)劃開頭

      2022我的學(xué)習(xí)計(jì)劃與安排

      2022高三數(shù)學(xué)知識(shí)點(diǎn)

      知識(shí)是取之不盡,用之不竭的。只有限度地挖掘它,才能體會(huì)到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識(shí)都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些高三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式
      1210161