高考數(shù)學(xué)必考題型整理
高考數(shù)學(xué)必看題型主要有函數(shù)與導(dǎo)數(shù)、平面向量與三角函數(shù)、數(shù)列、不等式、概率和統(tǒng)計(jì)、空間位置關(guān)系、解析幾何等,這些是高考中一定會(huì)出現(xiàn)的題型.接下來是小編為大家整理的高考數(shù)學(xué)必考題型整理,希望大家喜歡!
高考數(shù)學(xué)必考題型整理一
1、三角函數(shù)、向量、解三角形
(1)三角函數(shù)畫圖、性質(zhì)、三角恒等變換、和與差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)綜合題、三角題一般用平面向量進(jìn)行“包裝”,講究知識(shí)的交匯性,或?qū)⑷呛瘮?shù)與解三角形有機(jī)融合,
重視三角恒等變換下的性質(zhì)探究,重視考查圖形圖像的變換。
2、概率與統(tǒng)計(jì)
(1)古典概型。
(2)莖葉圖。
(3)直方圖。
(4)回歸方程(2x2列聯(lián)表)。
(5)(理)概率分布、期望、方差、排列組合。概率題貼近生活、貼近實(shí)際,考查等可能 性事件、互斥事件、獨(dú)立事件的概率計(jì)算公 式,難度不算很大
3、立體幾何
(1)平行。
(2)垂直。
(3)角a:異面直線角 b:(理)二面角、線面角。
(4)利用三視圖計(jì)算面積與體積。
(5)文理有一定的差別,理科相關(guān)題目既可以用傳統(tǒng)的幾何法,也可以建立空間直角坐標(biāo) 系,利用法向量等。文科對(duì)立體幾何的考查主 要是空間中平行、垂直關(guān)系的判斷與 證明,表面積體積的計(jì)算,直線與平面所成角的計(jì)算。理科對(duì)立體幾何的考查主要是 空間中平 行、垂直關(guān)系的判斷與證明,表面積體積的計(jì)算, 各類角的計(jì)算。
4、數(shù)列
(1)等差數(shù)列、等比數(shù)列、遞推數(shù)列是考查的熱點(diǎn),數(shù)列通項(xiàng)、數(shù)列前n項(xiàng)的和以及二者之間的關(guān)系。
(2)文理科的區(qū)別較大,理科多出現(xiàn)在壓軸題位置的卷型,理科注重?cái)?shù)學(xué)歸納法。
(3)錯(cuò)位相減法、裂項(xiàng)求和法。
(4)應(yīng)用題。
5、圓錐曲線(橢圓)與圓
(1)橢圓為主線,強(qiáng)調(diào)圓錐曲線與直線的位置關(guān)系,突出韋達(dá)定理或差值法。
(2)圓的方程,圓與直線的位置關(guān)系。
(3)注重橢圓與圓、橢圓與拋物線等的組合題。
6、函數(shù)、導(dǎo)數(shù)與不等式
(1)函數(shù)是該題型的主體:三次函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)及其復(fù)合函數(shù)。
(2)函數(shù)是考查的核心內(nèi)容,與導(dǎo)數(shù)結(jié)合,基本題型是判斷函數(shù)的單調(diào)性,求函數(shù)的最 值(極值),求曲線的切線方程,對(duì)參數(shù)取值范 圍、根的分布的探求,對(duì)參數(shù)的分 類討論以及代數(shù)推理等等。
(3)利用基本不等式、對(duì)勾函數(shù)性質(zhì)。
高考數(shù)學(xué)必考題型整理二
排列組合篇
1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題。
2.理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問題。
3.理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問題。
4.掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問題。
5.了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6.了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7.了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8.會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.
立體幾何篇
高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。選擇填空題考核立幾中的計(jì)算型問題,而解答題著重考查立幾中的邏輯推理型問題,當(dāng)然,二者均應(yīng)以正確的空間想象為前提。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展。從歷年的考題變化看,以簡(jiǎn)單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是常考常新的熱門話題。
知識(shí)整合
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點(diǎn)”。
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
(3)兩個(gè)平面平行的性質(zhì)定理:”如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那
么它們的交線平行“。
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。
(5)夾在兩個(gè)平行平面間的平行線段相等。
(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。
高考數(shù)學(xué)必考題型整理三
1、數(shù)列
(1)等差數(shù)列、等比數(shù)列、遞推數(shù)列是考查的熱點(diǎn),數(shù)列通項(xiàng)、數(shù)列前n項(xiàng)的和以及二者之間的關(guān)系。
(2)文理科的區(qū)別較大,理科多出現(xiàn)在壓軸題位置的卷型,理科注重?cái)?shù)學(xué)歸納法。
(3)錯(cuò)位相減法、裂項(xiàng)求和法。
(4)應(yīng)用題。
2、圓錐曲線(橢圓)與圓
(1)橢圓為主線,強(qiáng)調(diào)圓錐曲線與直線的位置關(guān)系,突出韋達(dá)定理或差值法。
(2)圓的方程,圓與直線的位置關(guān)系。
(3)注重橢圓與圓、橢圓與拋物線等的組合題。
小編推薦:高考數(shù)學(xué)題型特點(diǎn)和答題技巧
3、函數(shù)、導(dǎo)數(shù)與不等式
(1)函數(shù)是該題型的主體:三次函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)及其復(fù)合函數(shù)。
(2)函數(shù)是考查的核心內(nèi)容,與導(dǎo)數(shù)結(jié)合,基本題型是判斷函數(shù)的單調(diào)性,求函數(shù)的最值(極值),求曲線的切線方程,對(duì)參數(shù)取值范圍、根的分布的探求,對(duì)參數(shù)的分類討論以及代數(shù)推理等等。
(3)利用基本不等式、對(duì)勾函數(shù)性質(zhì)。
這些都是高考中常有的數(shù)學(xué)題類型,非常經(jīng)典,小編希望同學(xué)們能夠了解掌握。
高考數(shù)學(xué)必考題型整理相關(guān)文章:
★ 2020高考數(shù)學(xué)復(fù)習(xí)大題必考題型
★ 2020高考數(shù)學(xué)176個(gè)知識(shí)點(diǎn)題型歸納,高考數(shù)學(xué)如何達(dá)到及格
★ 高考數(shù)學(xué)常考題型答題技巧與方法有哪些
★ 高考數(shù)學(xué)重點(diǎn)題型答題技巧
★ 高考數(shù)學(xué)創(chuàng)新題型思維方法歸納
★ 高考數(shù)學(xué)題型特點(diǎn)和答題技巧