亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

      高一數(shù)學(xué)必修書的知識點分析

      時間: 贊銳20 分享

      合理安排好鍛煉身體、娛樂休閑放松心情、和勤奮學(xué)習(xí)的時間,才能有個好身體、好心情、和學(xué)習(xí)好效果。整天把自己搞得疲憊不堪、身體孱弱、心情亂七八糟的的學(xué)生,是無論如何也搞不好學(xué)習(xí)的!以下是小編給大家整理的高一數(shù)學(xué)必修書的知識點分析,希望大家能夠喜歡!

      高一數(shù)學(xué)必修書的知識點分析1

      直線和平面的位置關(guān)系:

      直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

      ①直線在平面內(nèi)——有無數(shù)個公共點

      ②直線和平面相交——有且只有一個公共點

      直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

      esp.空間向量法(找平面的法向量)

      規(guī)定:

      a、直線與平面垂直時,所成的角為直角,

      b、直線與平面平行或在平面內(nèi),所成的角為0°角

      由此得直線和平面所成角的取值范圍為[0°,90°]

      最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

      三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

      esp.直線和平面垂直

      直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

      直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

      直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

      ③直線和平面平行——沒有公共點

      直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

      直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

      直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

      高一數(shù)學(xué)必修書的知識點分析2

      集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當(dāng)于集合的名字,沒有任何實際的意義。

      將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。

      常用的有列舉法和描述法。

      1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}

      2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實數(shù)組成的集合表示為:{x|0

      3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內(nèi)部表示一個集合。集合

      自然語言常用數(shù)集的符號:

      (1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N_

      (2)非負(fù)整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負(fù)整數(shù)集內(nèi)也排除0的集,稱負(fù)整數(shù)集,記作Z-

      (3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z

      (4)全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負(fù)有理數(shù)集合分別記作Q+Q-)

      (5)全體實數(shù)的集合通常簡稱實數(shù)集,記作R(正實數(shù)集合記作R+;負(fù)實數(shù)記作R-)

      (6)復(fù)數(shù)集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

      Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時,會遇到有關(guān)集合中的元素個數(shù)問題,我們把有限集合A的元素個數(shù)記為card(A)。

      集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實數(shù)集R正實數(shù)集R+負(fù)實數(shù)集R-整數(shù)集Z正整數(shù)集Z+負(fù)整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負(fù)有理數(shù)集Q-不含0的有理數(shù)集Q_

      高一數(shù)學(xué)必修書的知識點分析3

      1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于函數(shù)A中的任意一個數(shù)x,在函數(shù)B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.

      注意:

      函數(shù)定義域:能使函數(shù)式有意義的實數(shù)x的函數(shù)稱為函數(shù)的定義域。

      求函數(shù)的定義域時列不等式組的主要依據(jù)是:

      (1)分式的分母不等于零;

      (2)偶次方根的被開方數(shù)不小于零;

      (3)對數(shù)式的真數(shù)必須大于零;

      (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

      (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).

      (6)指數(shù)為零底不可以等于零,

      (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

      ?相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點必須同時具備)

      2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

      (1)觀察法

      (2)配方法

      (3)代換法

      3.函數(shù)圖象知識歸納

      (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.

      (2)畫法

      A、描點法:

      B、圖象變換法

      常用變換方法有三種

      (1)平移變換

      (2)伸縮變換

      (3)對稱變換

      4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

      (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

      (2)無窮區(qū)間

      5.映射

      一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

      對于映射f:A→B來說,則應(yīng)滿足:

      (1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;

      (2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;

      (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。

      6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

      (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

      (2)各部分的自變量的取值情況.

      (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

      補充:復(fù)合函數(shù)

      如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。


      高一數(shù)學(xué)必修書的知識點分析相關(guān)文章:

      高一數(shù)學(xué)必修一知識點總結(jié)

      高一數(shù)學(xué)必修一函數(shù)知識點分析

      高一數(shù)學(xué)必修1各章知識點總結(jié)

      高中數(shù)學(xué)高一數(shù)學(xué)必修一知識點

      高一數(shù)學(xué)必修一知識點匯總

      高一數(shù)學(xué)必修一知識點梳理

      高一數(shù)學(xué)知識點全面總結(jié)

      高一數(shù)學(xué)必修1知識點歸納總結(jié)

      高中數(shù)學(xué)必修一知識點總結(jié)

      高一數(shù)學(xué)必修1知識點歸納

      1070683