高一數(shù)學(xué)公式必修一小總結(jié)
對于高一學(xué)生來說,想要學(xué)好高中數(shù)學(xué)就要先掌握好數(shù)學(xué)公式,那么高一數(shù)學(xué)公式有哪一些呢?下面給大家分享一些關(guān)于高一數(shù)學(xué)公式必修一小總結(jié),希望對大家有所幫助。
高一數(shù)學(xué)公式必修一總結(jié)1
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高一數(shù)學(xué)公式必修一總結(jié)2
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
弧長公式 l=a-r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2-l-r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1-X2=c/a 注:韋達(dá)定理
高一數(shù)學(xué)公式必修一總結(jié)3
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac>0 注:方程有兩個不等的實根
b2-4ac<0 注:方程沒有實根,有共軛復(fù)數(shù)根
高一數(shù)學(xué)公式必修一總結(jié)4
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
高一數(shù)學(xué)公式必修一總結(jié)5
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
高一數(shù)學(xué)公式必修一總結(jié)6
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
高一數(shù)學(xué)公式必修一總結(jié)7
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
高一數(shù)學(xué)公式必修一小總結(jié)相關(guān)文章:
★ 高一數(shù)學(xué)公式總結(jié)(必修一)
★ 高一數(shù)學(xué)必修一集合公式知識點與學(xué)習(xí)方法
★ 高一數(shù)學(xué)必修一知識點總結(jié)歸納