高考數(shù)學(xué)的解題技巧有哪些
在緊張的高考數(shù)學(xué)復(fù)習(xí)過程中,你掌握了哪些答題技巧了呢?哪些技巧你是很熟悉的呢?那么接下來給大家分享一些關(guān)于高考數(shù)學(xué)的解題技巧有哪些,希望對大家有所幫助。
高考數(shù)學(xué)的解題技巧有哪些
1、提前進(jìn)入數(shù)學(xué)情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過清點(diǎn)用具、暗示重要知識和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯誤等,進(jìn)行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動的心態(tài)準(zhǔn)備應(yīng)考。
2、“內(nèi)緊外松”
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
3、沉著應(yīng)戰(zhàn)
良好的開端是成功的一半,從考試的心理角度來說,這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵,穩(wěn)拿中低,見機(jī)攀高。
4、“六先六后”
在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場解題能力的黃金季節(jié)了,這時,考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
1).先易后難。就是先做簡單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動的題目,從易到難,也要注意認(rèn)真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2).先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應(yīng)想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
3).先同后異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力。
4).先小后大。小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過,應(yīng)爭取在大題之前盡快解決,從而為解決大題贏得時間,創(chuàng)造一個寬松的心理基矗5.先點(diǎn)后面。近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營,由點(diǎn)到面6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時間不足前提下的得分。
5、一“慢”一“快”
有些考生只知道考場上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說,審題要慢,解答要快。審題是整個解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識,為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
6、確保運(yùn)算準(zhǔn)確
數(shù)學(xué)高考題的容量在120分鐘時間內(nèi)完成大小26個題,時間很緊張,不允許做大量細(xì)致的解后檢驗,所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。速完成。
7、規(guī)范書寫
考試的又一個特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書寫要工整,卷面能得分”講的也正是這個道理。
8、講究方法
會做的題目當(dāng)然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1).缺步解答。對一個疑難問題,確實(shí)啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語言譯成符號語言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
2).跳步解答。解題過程卡在一中間環(huán)節(jié)上時,可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對,立即否得到正確結(jié)論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時間限制,中間結(jié)論來不及得到證實(shí),就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
9、以退求進(jìn)
發(fā)散一般對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等??傊说揭粋€你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達(dá)到對“一般”的解決。
10、執(zhí)果索因
對一個問題正面思考發(fā)生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
11、解決探索性問題
對探索性問題,不必追求結(jié)論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。
12、面—點(diǎn)—線
解決應(yīng)用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,求解過程和結(jié)果都不能離開實(shí)際背景。
學(xué)習(xí)數(shù)學(xué)的學(xué)習(xí)建議
一、閱讀理解。目前初中學(xué)生學(xué)習(xí)數(shù)學(xué)存在一個嚴(yán)重的問題就是不善于讀數(shù)學(xué)教材,他們往往是死記硬背。重視閱讀方法對提高初中學(xué)生的學(xué)習(xí)能力是至關(guān)重要的。新學(xué)一個章節(jié)內(nèi)容,先粗粗讀一遍,即瀏覽本章節(jié)所學(xué)內(nèi)容的枝干,然后一邊讀一邊勾,粗略懂得教材的內(nèi)容及其重點(diǎn)、難點(diǎn)所在,對不理解的地方打上記號。然后細(xì)細(xì)地讀,即根據(jù)每章節(jié)后的學(xué)習(xí)要求,仔細(xì)閱讀教材內(nèi)容,理解數(shù)學(xué)概念、公式、法則、思想方法的實(shí)質(zhì)及其因果關(guān)系,把握重點(diǎn)、突破難點(diǎn)。再次帶著研究者的態(tài)度去讀,即帶著發(fā)展的觀點(diǎn)研討知識的來龍去脈、結(jié)構(gòu)關(guān)系、編排意圖,并歸納要點(diǎn),把書讀懂,并形成知識網(wǎng)絡(luò),完善認(rèn)識結(jié)構(gòu),當(dāng)學(xué)生掌握了這三種讀法,形成習(xí)慣之后,就能從本質(zhì)上改變其學(xué)習(xí)方式,提高學(xué)習(xí)效率了。
二、提高聽課質(zhì)量要培養(yǎng)會聽課,聽懂課的習(xí)慣。注意聽教師每節(jié)課強(qiáng)調(diào)的學(xué)習(xí)重點(diǎn),注意聽對定理、公式、法則的引入與推導(dǎo)的方法和過程,注意聽對例題關(guān)鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點(diǎn),沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>
三、有疑必問是提高學(xué)習(xí)效率的有效辦法學(xué)習(xí)過程中,遇到疑問,抓緊時間問老師和同學(xué),把沒有弄懂,沒有學(xué)明白的知識,最短的時間內(nèi)掌握。建立自己的錯題本,經(jīng)常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學(xué)習(xí)效率。
初中數(shù)學(xué)考試常用解題技巧
一、認(rèn)真分析問題,找解題準(zhǔn)切入點(diǎn)
由于數(shù)學(xué)問題紛繁復(fù)雜,學(xué)生容易受定勢思維的影響,這樣就會響解題思路造成很大的影響。例如:AB=DC,AC=DB。求證:∠A=∠D。
此題是一道比較經(jīng)典的證明全等的題型,主要是對學(xué)生對已知條件整合能力和觀察識圖能力的鍛煉。然而,從圖形的直觀角度來證明∠AOC=∠DOB,這樣的思路只會落入題目所設(shè)下的陷阱。
二、發(fā)揮想象力,借助面積出奇制勝
面積問題是數(shù)學(xué)中常出現(xiàn)的問題,在面積定義及相關(guān)規(guī)律中,蘊(yùn)含著深刻的數(shù)學(xué)思想,如果學(xué)生能充分了解其中的韻味,能夠熟練的掌握其中的數(shù)學(xué)論證思維,就有可能在其他數(shù)學(xué)問題中借助面積,出奇制勝順利實(shí)現(xiàn)解題。
例1:若E、F分別是矩形ABCD邊AB、CD的中點(diǎn),且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長之比為。
由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設(shè)矩形EFDA與矩形ABCD的相似比為k。因為E、F分別是矩形ABCD的中點(diǎn)所以S矩形ABCD=2S矩形EFDA所以S矩形EFDAS矩形ABCD=k2=12。所以k=1∶2。即矩形ABCD的寬與長之比為1∶2;故選(C)。
此題我們利用了相似多邊形面積的比等于相似比平方,這一性質(zhì),巧妙解決相似矩形中的長與寬比的問題。事實(shí)上,借助面積,形成解題思路的過程,就是學(xué)生思維轉(zhuǎn)換的過程。
三、巧取特殊值,以簡代繁
初中數(shù)學(xué)雖然是基礎(chǔ)數(shù)學(xué),但是這并不意味著就沒有難度,特別是在素質(zhì)教育下,從培養(yǎng)學(xué)生綜合素質(zhì)能力的角度出發(fā),初中數(shù)學(xué)越來越重視數(shù)學(xué)思維的培養(yǎng),因此在很多數(shù)學(xué)問題的設(shè)置上,都進(jìn)行了相當(dāng)難度的調(diào)整,使得數(shù)學(xué)問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。如有些數(shù)學(xué)問題是在一定的范圍內(nèi)研究它的性質(zhì),如果從所有的值去逐一考慮,那么問題將不勝其煩甚至陷入困境。在這種情況下,避開常規(guī)解法,跳出既定數(shù)學(xué)思維,就成了解題的關(guān)鍵。
例2:分解因式:x2+2xy-8y2+2x+14y-3。
思路分析:本題是二元多項式,從常規(guī)思路進(jìn)行解題也未嘗不可,但是從鍛煉學(xué)生思維能力的角度出發(fā),教師可以在立足常規(guī)解法的基礎(chǔ)上,引導(dǎo)學(xué)生進(jìn)行其他方面解題思路的探索。如從巧取特值的角度出發(fā),把其中的一個未知數(shù)設(shè)為0,則可以暫時隱去這個未知數(shù),而就另一個未知數(shù)的式子來分解因式,達(dá)到化二元為一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)??芍?,1×4+(-2)×1正好等于原式中xy項的系數(shù)。因此,綜合起來有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。
其實(shí),用特殊值法,也叫取零法。這種方法在因式分解中可以發(fā)揮很大的作用,幫助學(xué)生找到其他的解題思路。一般來說其步驟是:A.把多項式中的一個字母設(shè)為0所得的結(jié)果分解因式,B.把多項中的另一個字母設(shè)為0所得的結(jié)果分解因式,C.把上兩步分解的結(jié)果綜合起來,得出原多項式的分解結(jié)果。但要注意:兩次分解的一次因式的常數(shù)項必須相等。否則,在綜合這兩步的結(jié)果時就無所適從了。
四、巧妙轉(zhuǎn)換,過渡求解法
在解數(shù)學(xué)題時,即要對已知的條件進(jìn)行全面分析,還要善于將題目中的隱性條件挖掘出來,將數(shù)學(xué)中各知識之間的聯(lián)系巧妙的運(yùn)用起來,用全面、全新的視角來解決問題。
例如:已知:AB為半圓的直徑,其長度為40 cm,點(diǎn)C、D是該半圓的三等分點(diǎn),求弦AC、AD與弧CD所圍成的圖形的面積。
本題需要解出的是一個不規(guī)則圖形的面積,可能大多數(shù)同學(xué)的思維就是將CD連結(jié)起來,將其轉(zhuǎn)變?yōu)橐粋€角形和弓形,兩者面積之和就為該題需要解決的問題。
綜上所述,數(shù)學(xué)的解題方法是隨著對數(shù)學(xué)對象的研究的深入而發(fā)展起來的。教師鉆研習(xí)題、精通解題方法,可以促進(jìn)教師進(jìn)一步熟練地掌握中學(xué)數(shù)學(xué)教材,練好解題的基本功,提高解題技巧,積累教學(xué)資料,提高業(yè)務(wù)水平和教學(xué)能力。初中數(shù)學(xué)解題存在很強(qiáng)的靈活性。有的數(shù)學(xué)題不只一種解法,而有多種解法,有的數(shù)學(xué)題用常規(guī)方法解決不了,要用特殊方法。因此,解數(shù)學(xué)題要注意它的靈活性和技巧性。解題技巧在升學(xué)考試中至關(guān)重要,不能忽視。初中數(shù)學(xué)教師要注意對解題技巧的鉆研,并鼓勵學(xué)生發(fā)散思維,尋找解題技巧,提高解題效率,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的能力。
高考數(shù)學(xué)的解題技巧有哪些相關(guān)文章:
★ 高考數(shù)學(xué)復(fù)習(xí)必看的六個答題技巧
★ 高考數(shù)學(xué)??碱}型答題技巧與方法有哪些