2020中考數(shù)學(xué)備考?jí)狠S題方法指導(dǎo)
壓軸題是為了考查學(xué)生綜合運(yùn)用知識(shí)的能力而設(shè)計(jì)的題型,具有知識(shí)點(diǎn)多、覆蓋面廣、條件隱蔽、關(guān)系復(fù)雜、思路難覓、解法靈活等特點(diǎn)。因此,如何解中考數(shù)學(xué)壓軸題成了很多同學(xué)關(guān)心話題。接下來(lái)小編為大家整理了初三備考學(xué)習(xí)相關(guān)內(nèi)容,一起來(lái)看看吧!
2020中考數(shù)學(xué)備考?jí)狠S題方法指導(dǎo)
1、學(xué)會(huì)運(yùn)用數(shù)形結(jié)合思想。
數(shù)形結(jié)合思想是指從幾何直觀的角度,利用幾何圖形的性質(zhì)研究數(shù)量關(guān)系,尋求代數(shù)問(wèn)題的解決方法(以形助數(shù)),或利用數(shù)量關(guān)系來(lái)研究幾何圖形的性質(zhì),解決幾何問(wèn)題(以數(shù)助形)的一種數(shù)學(xué)思想. 數(shù)形結(jié)合思想使數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),使問(wèn)題得以解決。
縱觀近幾年全國(guó)各地的中考?jí)狠S題,絕大部分都是與平面直角坐標(biāo)系有關(guān),其特點(diǎn)是通過(guò)建立點(diǎn)與數(shù)即坐標(biāo)之間的對(duì)應(yīng)關(guān)系,一方面可用代數(shù)方法研究幾何圖形的性質(zhì),另一方面又可借助幾何直觀,得到某些代數(shù)問(wèn)題的解答。
2、學(xué)會(huì)運(yùn)用函數(shù)與方程思想。
從分析問(wèn)題的數(shù)量關(guān)系入手,適當(dāng)設(shè)定未知數(shù),把所研究的數(shù)學(xué)問(wèn)題中已知量和未知量之間的數(shù)量關(guān)系,轉(zhuǎn)化為方程或方程組的數(shù)學(xué)模型,從而使問(wèn)題得到解決的思維方法,這就是方程思想。
用方程思想解題的關(guān)鍵是利用已知條件或公式、定理中的已知結(jié)論構(gòu)造方程(組)。這種思想在代數(shù)、幾何及生活實(shí)際中有著廣泛的應(yīng)用。
直線與拋物線是初中數(shù)學(xué)中的兩類重要函數(shù),即一次函數(shù)與二次函數(shù)所表示的圖形。因此,無(wú)論是求其解析式還是研究其性質(zhì),都離不開函數(shù)與方程的思想。例如函數(shù)解析式的確定,往往需要根據(jù)已知條件列方程或方程組并解之而得。
3、學(xué)會(huì)運(yùn)用分類討論的思想。
分類討論思想可用來(lái)檢測(cè)學(xué)生思維的準(zhǔn)確性與嚴(yán)密性,常常通過(guò)條件的多變性或結(jié)論的不確定性來(lái)進(jìn)行考察,有些問(wèn)題,如果不注意對(duì)各種情況分類討論,就有可能造成錯(cuò)解或漏解,縱觀近幾年的中考?jí)狠S題分類討論思想解題已成為新的熱點(diǎn)。
在解答某些數(shù)學(xué)問(wèn)題時(shí),有時(shí)會(huì)遇到多種情況,需要對(duì)各種情況加以分類,并逐類求解,然后綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數(shù)學(xué)思想,同時(shí)也是一種重要的解題策略,它體現(xiàn)了化整為零、積零為整的思想與歸類整理的方法。
分類的原則:
(1)分類中的每一部分是相互獨(dú)立的;
(2)一次分類按一個(gè)標(biāo)準(zhǔn);
(3)分類討論應(yīng)逐級(jí)進(jìn)行.正確的分類必須是周全的,既不重復(fù)、也不遺漏
4、學(xué)會(huì)運(yùn)用等價(jià)轉(zhuǎn)換思想。
轉(zhuǎn)化思想是解決數(shù)學(xué)問(wèn)題的一種最基本的數(shù)學(xué)思想。在研究數(shù)學(xué)問(wèn)題時(shí),我們通常是將未知問(wèn)題轉(zhuǎn)化為已知的問(wèn)題,將復(fù)雜的問(wèn)題轉(zhuǎn)化為簡(jiǎn)單的問(wèn)題,將抽象的問(wèn)題轉(zhuǎn)化為具體的問(wèn)題,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。轉(zhuǎn)化的非常豐富,已知與未知、數(shù)量與圖形、圖形與圖形之間都可以通過(guò)轉(zhuǎn)化來(lái)獲得解決問(wèn)題的轉(zhuǎn)機(jī)。
任何一個(gè)數(shù)學(xué)問(wèn)題的解決都離不開轉(zhuǎn)換的思想,初中數(shù)學(xué)中的轉(zhuǎn)換大體包括由已知向未知,由復(fù)雜向簡(jiǎn)單的轉(zhuǎn)換,而作為中考?jí)狠S題,更注意不同知識(shí)之間的聯(lián)系與轉(zhuǎn)換,一道中考?jí)狠S題一般是融代數(shù)、幾何、三角于一體的綜合試題,轉(zhuǎn)換的思路更要得到充分的應(yīng)用。
中考?jí)狠S題所考察的并非孤立的知識(shí)點(diǎn),也并非個(gè)別的思想方法,它是對(duì)考生綜合能力的一個(gè)全面考察,所涉及的知識(shí)面廣,所使用的數(shù)學(xué)思想方法也較全面。因此有的考生對(duì)壓軸題有一種恐懼感,認(rèn)為自己的水平一般,做不了,甚至連看也沒(méi)看就放棄了,當(dāng)然也就得不到應(yīng)得的分?jǐn)?shù),為了提高壓軸題的得分率,考試中還需要有一種分題、分段的得分策略。
5、要學(xué)會(huì)搶得分點(diǎn)。
一道中考數(shù)學(xué)壓軸題解不出來(lái),不等于“一點(diǎn)不懂、一點(diǎn)不會(huì)”,要將整道題目解題思路轉(zhuǎn)化為得分點(diǎn)。如中考數(shù)學(xué)壓軸題一般在大題下都有兩至三個(gè)小題,難易程度是第1小題較易,大部學(xué)生都能拿到分?jǐn)?shù);第2小題中等,起到承上啟下的作用;第3題偏難,不過(guò)往往建立在1、2兩小題的基礎(chǔ)之上。因此,我們?cè)诮獯饡r(shí)要把第1小題的分?jǐn)?shù)一定拿到,第2小題的分?jǐn)?shù)要力爭(zhēng)拿到,第3小題的分?jǐn)?shù)要爭(zhēng)取得到,這樣就大大提高了獲得中考數(shù)學(xué)高分的可能性。
中考的評(píng)分標(biāo)準(zhǔn)是按照題目所考查的知識(shí)點(diǎn)進(jìn)行評(píng)分,解對(duì)知識(shí)點(diǎn)、抓住得分點(diǎn)就會(huì)得分。因此,對(duì)于數(shù)學(xué)中考?jí)狠S題盡可能解答“靠近”得分點(diǎn),最大限度地發(fā)揮自己的水平,把中考數(shù)學(xué)壓軸題變成高分踏腳石。
提高中考數(shù)學(xué)計(jì)算的正確率
第一,要對(duì)計(jì)算引起足夠的重視。很多同學(xué)總以為計(jì)算式題比分析應(yīng)用題容易得多,對(duì)一些法則、定律等知識(shí)學(xué)得比較扎實(shí),計(jì)算是件輕而易舉的事情,因而在計(jì)算時(shí)或過(guò)于自信,或注意力不能集中,結(jié)果錯(cuò)誤百出。其實(shí),計(jì)算正確并不是一件很容易的事。例如計(jì)算一道像37×54這樣簡(jiǎn)單的式題,要用到乘法、加法的運(yùn)算法則,經(jīng)過(guò)四次表內(nèi)乘法和四次一位數(shù)加法才能完成。至于計(jì)算一道分?jǐn)?shù)、小數(shù)四則混合運(yùn)算式題,需要用到運(yùn)算順序、運(yùn)算定律和四則運(yùn)算的法則等大量的知識(shí),經(jīng)過(guò)數(shù)十次基本計(jì)算。在這個(gè)復(fù)雜的過(guò)程中,稍有粗心大意就會(huì)使全題計(jì)算錯(cuò)誤。因此,計(jì)算時(shí)來(lái)不得半點(diǎn)馬虎。
第二,要按照計(jì)算的一般順序進(jìn)行。首先,弄清題意,看看有沒(méi)有簡(jiǎn)單方法、得數(shù)保留幾位小數(shù)等特別要求;其次,觀察題目特點(diǎn),看看幾步運(yùn)算,有無(wú)簡(jiǎn)便算法;再次,確定運(yùn)算順序。在此基礎(chǔ)上利用有關(guān)法則、定律進(jìn)行計(jì)算。最后,要仔細(xì)檢查,看有無(wú)錯(cuò)抄、漏抄、算錯(cuò)現(xiàn)象。
第三,要養(yǎng)成認(rèn)真演算的好習(xí)慣。有些同學(xué)由于演算不認(rèn)真而出現(xiàn)錯(cuò)誤。數(shù)據(jù)寫不清,辨認(rèn)失誤。打草稿時(shí)不能按照一定的順序排列豎式,出現(xiàn)上下粘連,左右不分,再加上相同數(shù)位不對(duì)齊,既不便于檢查,又極易看錯(cuò)數(shù)據(jù)。所以一定要養(yǎng)成有序排列豎式,認(rèn)真書寫數(shù)字的良好習(xí)慣。
第四,不能盲目追求高速度。計(jì)算又對(duì)又快是最理想的目標(biāo),但必須知道計(jì)算正確是前提條件,是最基本的要求,沒(méi)有正確作基礎(chǔ)的高速度是沒(méi)有任何價(jià)值的。所以,寧愿計(jì)算的速度慢一些,也要保證計(jì)算正確,提高計(jì)算的正確率。