初中數(shù)學(xué)重點知識點的歸納總結(jié)
學(xué)好初中數(shù)學(xué)不是一朝一夕的事情,一定要做到持之以恒,養(yǎng)成一個良好的學(xué)習(xí)習(xí)慣。以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)重點知識點,希望可以幫到你!
初中數(shù)學(xué)重點知識點
1.1 有理數(shù)的加法運算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對值的大小。
1.2 有理數(shù)的減法運算
減正等于加負,減負等于加正
1.3 有理數(shù)的乘法運算符號法則
同號得正異號負,一項為零積是零。
2 合并同類項
說起合并同類項,法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
3 去、添括號法則
去括號、添括號,關(guān)鍵要看連接號。
擴號前面是正號,去添括號不變號。
括號前面是負號,去添括號都變號。
4 解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
5.1 平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項,完全平方不是它。
5.2.1 完全平方公式
二數(shù)和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
5.2.2 完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
6.1 解一元一次方程
先去分母再括號,移項變號要記牢。
同類各項去合并,系數(shù)化“1”還沒好。
求得未知須檢驗,回代值等才算了。
6.2 解一元一次方程
先去分母再括號,移項合并同類項。
系數(shù)化1還沒好,準確無誤不白忙。
7 因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
8.1因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
8.2 因式分解
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住
【注】 一提(提公因式)二套(套公式)
8.3 因式分解
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。
對癥下藥穩(wěn)又準,連乘結(jié)果是基礎(chǔ)。
8.4.1 用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
8.4.2 用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數(shù)。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數(shù)。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數(shù)。
8.5 二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
9.1 比和比例
兩數(shù)相除也叫比,兩比相等叫比例。
外項積等內(nèi)項積,等積可化八比例。
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。
同時交換內(nèi)外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
9.2 解比例
外項積等內(nèi)項積,列出方程并解之。
9.3 求比值
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
9.4.1 正比例與反比例
商定變量成正比,積定變量成反比。
9.4.2 正比例與反比例
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
9.5.1 判斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
9.5.2 判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
9.6 比例中項
成比例的四項中,外項相同會遇到。
有時內(nèi)項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內(nèi)項會相同,比例中項出現(xiàn)了。
同數(shù)平方等異積,比例中項無處逃。
10 根式與無理式
表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區(qū)分它們有標志。
被開方式有字母,又可稱為無理式。
中考數(shù)學(xué)公式定理
點線角定理:
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:同角或等角的補角相等
角的定理:同角或等角的余角相等
直線定理:過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
平行定理:
經(jīng)過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
平行性質(zhì):
1、同位角相等,兩直線平行
2、內(nèi)錯角相等,兩直線平行
3、同旁內(nèi)角互補,兩直線平行
平行推論:
1、兩直線平行,同位角相等
2、兩直線平行,內(nèi)錯角相等
3、兩直線平行,同旁內(nèi)角互補
三角形內(nèi)角定理:
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1:直角三角形的兩個銳角互余
推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
全等三角形判定定理:
定理:全等三角形的對應(yīng)邊、對應(yīng)角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應(yīng)相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
角的平分線定理:
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形的性質(zhì)定理:
等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論3:等邊三角形的各角都相等,并且每一個角都等于60°
等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等 角對等邊)
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角等于60°的等腰三角形是等邊三角形
對稱定理
定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理1:關(guān)于某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
直角三角形定理:
定理:在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
判定定理:直角三角形斜邊上的中線等于斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a²+b²=c²。
勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系a²+b²=c²,那么這個三角形是直角三角形。
多邊形內(nèi)角和定理:
定理:四邊形的內(nèi)角和等于360°;四邊形的外角和等于360°
多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n-2)×180°
推論:任意多邊的外角和等于360°
初中數(shù)學(xué)學(xué)習(xí)方法
1、課前課上及課后
先來說說大家都熟知的一些學(xué)習(xí)方法,也是一些基本的方法,這些方法確實是一些好的方法,主要就是看大家能不能真正的做好這些事情。下面讓我們來具體地看看。
課前:課前需要預(yù)習(xí),預(yù)習(xí)需要我們?nèi)グ呀酉聛硪系膬?nèi)容整體上看一遍,然后找出其中的重點與難點,以及自己無法很好理解的內(nèi)容,分別做上不同的標記,以便在上課的時候針對自己的問題去認真聽課與重點理解。
課上:在上課的時候不太可能整節(jié)課都集中精神,這時候就更顯現(xiàn)出我們課前預(yù)習(xí)的重要性了。我們需要在上課的時候集中精神聽講預(yù)習(xí)中所遇到的重點與難點,盡量地在課堂上去理解吸收。同時也可以看看老師講的重點與自己課前預(yù)習(xí)所確定的重點是否一致。另外,對于老師重點講解的東西需要做下相應(yīng)的筆記,以便之后復(fù)習(xí)用。
課后:課后的復(fù)習(xí)一定要及時跟上,不僅當天要對學(xué)習(xí)的內(nèi)容進行復(fù)習(xí),在之后的幾天里也應(yīng)該要花一定的時間去復(fù)習(xí),同時可以跟上一些練習(xí)進行檢測與鞏固。如果復(fù)習(xí)的時候發(fā)現(xiàn)還有不明白的地方,一定要及時的去詢問老師或是其他同學(xué),將其弄懂。
課前課上及課后三個步驟環(huán)環(huán)相扣,一定要把每一步都做到位。
2、提高作業(yè)效率
現(xiàn)在很多學(xué)生以及家長都反應(yīng)說作業(yè)太多,來不及或是沒有時間去完成作業(yè),導(dǎo)致學(xué)習(xí)成績不佳。但是我們應(yīng)該要想一想,我們大家的時間都是一樣多的,而大家的作業(yè)也是一樣多的,為什么有的人能夠完成,而有的人不能夠完成呢。這里就要說到學(xué)習(xí)的效率了,有的學(xué)生能夠先復(fù)習(xí),然后再做作業(yè),做作業(yè)的時候集中注意力,能夠很快速地完成。而有的學(xué)生就與之相反了,首先可能課上就沒有聽好,然后做作業(yè)之前也沒有進行復(fù)習(xí),而是直接開始做的,同時也可能是做作業(yè)的時候不夠集中注意力,即使作業(yè)不是很多,也需要花很長的時間去完成。
其實這都是因為一種不好的學(xué)習(xí)習(xí)慣,導(dǎo)致了做作業(yè)的效率不高。那么我們應(yīng)該如何去提高做作業(yè)的效率呢?下面我給出了幾個建議,供大家參考一下。
一、要有端正的寫作業(yè)的態(tài)度。
從思想上要認真對待,如果養(yǎng)成懶散的習(xí)慣了,以后問題就會更多,今日不努力,明日就會失去更多,再要改善起來,就更難了。因為一個好習(xí)慣的養(yǎng)成是要下決心去堅持的,雖然由于以前的習(xí)慣不好或者遺留問題太多導(dǎo)致在堅持的過程中會容易產(chǎn)生抵觸的情緒,甚至有時還容易放棄,但是要知道,一旦好習(xí)慣養(yǎng)成之后,原來所經(jīng)常遇到的問題就會越來越少,成績也自然提高了起來。
二、注意力一定要集中。
不要在寫作業(yè)的時候干其他的事或想其他事,一心不能二用。盡快地反作業(yè)做完了才能夠去做別的事情。
三、要學(xué)會總結(jié)。
如果在看到題目后能很快反映出這題目所需要的知識點,那么做題速度就會提高,在做題之后也要總結(jié)一下思路。多總結(jié)一下會發(fā)現(xiàn)很多題目都有規(guī)律可循,這樣可以起到事半功倍的效果,以后再碰到類似問題時,就可以很輕松了。
四、營造一個良好的寫作業(yè)環(huán)境。
孩子寫作業(yè)時盡量保持安靜,書桌上除了放書、學(xué)習(xí)用品等之外,不要放其他的東西,以免分散他們的注意力。家長也不要過度的嘮叨和訓(xùn)斥,要多鼓勵孩子。
3加強計算能力
計算一直是數(shù)學(xué)的一個核心內(nèi)容,幾乎每一個數(shù)學(xué)問題都需要通過計算。那么,計算的準確率就顯得尤為重要了。想要提高數(shù)學(xué)成績,計算的準確率是一定要提高的。那么如何提高計算的準確率呢?這里我也同樣給出了幾條建議。
一、強化學(xué)生的有意注意和良好的計算習(xí)慣
(1)仔細審題的習(xí)慣。拿到題目后認真審題,看清題目的要求,想明白過程中應(yīng)該注意哪些問題。
(2)細心檢查的習(xí)慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來的問題驗算。若為計算題則仔細檢查每一個步驟。
(3)認真書寫的習(xí)慣。書寫要干凈整潔,這樣能使自己在做題時看清題目,避免
錯誤的發(fā)生。
二、強化口算能力
任何計算都是以口算為基礎(chǔ)的,口算能力的高低,直接影響到學(xué)生其它運算能力的提高。要提高口算能力,首先要抓好口算的基本訓(xùn)練,所以應(yīng)當經(jīng)常性的進行一些口算的練習(xí)。
三、速算巧算
平時在做計算的時候要注意運算技巧地運用,加快運算速度,特別是在分數(shù)計算的部分,有時候數(shù)字比較大比較多,通分將會很困難,這時可能把分母寫成乘積的形式將是一種更好的選擇。
四、強化估算能力
很多的問題,特別是應(yīng)用題,當看到問題后就能夠大概地去估計一下結(jié)果大概會是一個什么范圍的數(shù),有了這種估計能力之后,有時候發(fā)生計算錯誤就能夠一下子看出來。所以在做題之前我們也可以估計一下答案的范圍,如果算得的答案不在這個范圍,那就需要我們?nèi)z查了。
五、合理利用一些數(shù)的性質(zhì)
比如說奇數(shù)乘以偶數(shù)一定是一個偶數(shù),各位數(shù)字和是3的倍數(shù)的數(shù)一定能被3整除等等性質(zhì),都可以幫助我們對運算是否準確做一些輔助的判斷。
說了這么多,總結(jié)起來其實也很簡單,只要堅持一個好的學(xué)習(xí)習(xí)慣,做好復(fù)習(xí)練習(xí),那么數(shù)學(xué)學(xué)習(xí)就能夠事半功倍,學(xué)好數(shù)學(xué)自然也就不在話下。
猜你喜歡: