高考數(shù)學(xué)的易錯點(diǎn)匯總分析
高考數(shù)學(xué)的解答方式每個人都不相同,但是基本思路還是一樣的。解題的過程中,很多同學(xué)都不是不會寫,就是沒看清題目導(dǎo)致經(jīng)常出錯,對于易錯點(diǎn),我們要揪出并改正。下面由學(xué)習(xí)啦小編為大家提供關(guān)于高考數(shù)學(xué)的易錯點(diǎn)匯總分析,希望對大家有幫助!
高考數(shù)學(xué)的易錯點(diǎn)分析一
解答數(shù)學(xué)問題的三類方法
(1)具有創(chuàng)立學(xué)科功能的方法。如公理化方法、模型化方法、結(jié)構(gòu)化方法,以及集合論方法、極限方法、坐標(biāo)方法、向量方法等。在具體的解題中,具有統(tǒng)帥全局的作用。
(2)體現(xiàn)一般思維規(guī)律的方法。如觀察、試驗(yàn)、比較、分類、猜想、類比、聯(lián)想、歸納、演繹、分析、綜合等。在具體的解題中,有通性通法、適應(yīng)面廣的特征,常用于思路的發(fā)現(xiàn)與探求。
(3)具體進(jìn)行論證演算的方法。這又可以依其適應(yīng)面分為兩個層次:第一層次是適應(yīng)面較寬的求解方法,如消元法、換元法、降次法、待定系數(shù)法、反證法、同一法、數(shù)學(xué)歸納法(即遞推法)、坐標(biāo)法、三角法、數(shù)形結(jié)合法、構(gòu)造法、配方法等等;第二層次是適應(yīng)面較窄的求解技巧,如因式分解法以及因式分解里的“裂項(xiàng)法”、函數(shù)作圖的“描點(diǎn)法”、以及三角函數(shù)作圖的“五點(diǎn)法”、幾何證明里的“截長補(bǔ)短法”、“補(bǔ)形法”、數(shù)列求和里的“裂項(xiàng)相消法”等。
我們知道,數(shù)學(xué)是關(guān)于數(shù)與形的科學(xué),數(shù)與形的有機(jī)結(jié)合是數(shù)學(xué)解題的基本思想。數(shù)學(xué)是關(guān)于模式的科學(xué),這反映了在數(shù)學(xué)解題時,需要進(jìn)行“模式識別”,需要構(gòu)建標(biāo)準(zhǔn)的模型。往往遇到的問題是標(biāo)準(zhǔn)模型里的參數(shù)是需要待定的,這說明待定系數(shù)法屬于解題的通性通法。數(shù)學(xué)是一種符號,引入符號可以將自然語言轉(zhuǎn)換為符號語言,通過中間量的代換,就能將復(fù)雜問題簡單化。數(shù)學(xué)解題就是一系列連續(xù)的化歸與轉(zhuǎn)化,將復(fù)雜問題簡單化、陌生問題熟悉化,其消元、減少參變元的個數(shù)是常用的方法。在代數(shù)式的變形中,則往往要分離出非負(fù)的量,配方技術(shù)是經(jīng)常使用且很奏效的方法。
數(shù)形轉(zhuǎn)換、待定系數(shù)、變量代換、消元、配方法等是中學(xué)數(shù)學(xué)解題的通性通法。把幾何的直觀推理、代數(shù)的有序推理、解題的通性通法與具體的案例結(jié)合起來,整體把握數(shù)學(xué)解題的通性通法,抓住通性通法的本質(zhì),科學(xué)有效地實(shí)施解題分析、解題思維鏈的形成、解題后的反思與優(yōu)化,從而通過有限問題的訓(xùn)練來獲得解答無限問題的解題智慧。
高考數(shù)學(xué)的易錯點(diǎn)分析二
1.集合中元素的特征認(rèn)識不明。
元素具有確定性,無序性,互異性三種性質(zhì)。
2.遺忘空集。
A含于B時求集合A,容易遺漏A可以為空集的情況。比如A為(x-1)的平方>0,x=1時A為空集,也屬于B.求子集或真子集個數(shù)時容易漏掉空集。
3.忽視集合中元素的互異性。
4.充分必要條件顛倒致誤。
必要不充分和充分不必要的區(qū)別——:比如p可以推出q,而q推不出p,就是充分不必要條件,p不可以推出q,而q卻可以推出p,就是必要不充分。
5.對含有量詞的命題否定不當(dāng)。
含有量詞的命題的否定,先否定量詞,再否定結(jié)論。
6.求函數(shù)定義域忽視細(xì)節(jié)致誤。
根號內(nèi)的值必須不能等于0,對數(shù)的真數(shù)大于等于零,等等。
7.函數(shù)單調(diào)性的判斷錯誤。
這個就得注意函數(shù)的符號,比如f(-x)的單調(diào)性與原函數(shù)相反。
8.函數(shù)奇偶性判定中常見的兩種錯誤。
判定主要注意1,定義域必須關(guān)于原點(diǎn)對稱,2,注意奇偶函數(shù)的判斷定理,化簡要小心負(fù)號。
9.求解函數(shù)值域時忽視自變量的取值范圍。
總之有關(guān)函數(shù)的題,不管是要你求什么,第一步先看定義域,這個是關(guān)鍵。
10.抽象函數(shù)中推理不嚴(yán)謹(jǐn)致誤。
11.不能實(shí)現(xiàn)二次函數(shù),一元二次方程和一元二次不等式的相互轉(zhuǎn)換。
二次函數(shù)令y為0→方程→看題目要求是什么→要么方程大于小于0,要么刁塔(那個小三角形)b的平方-4ac大于等于小于0種種。
12.比較大小時,對指數(shù)函數(shù),對數(shù)函數(shù),和冪函數(shù)的性質(zhì)記憶模糊導(dǎo)致失誤。
13.忽略對數(shù)函數(shù)單調(diào)性的限制條件導(dǎo)致失誤。
14.函數(shù)零點(diǎn)定理使用不當(dāng)致誤。
f(a)xf(b)<0,則區(qū)間ab上存在零點(diǎn)。
15.忽略冪函數(shù)的定義域而致錯。
x的二分之一次方定義域?yàn)?到正無窮。
16.錯誤理解導(dǎo)數(shù)的定義致誤。
17.導(dǎo)數(shù)與極值關(guān)系不清致誤。
f‘派x為0解出的根不一定是極值這個要注意。
18.導(dǎo)數(shù)與單調(diào)性關(guān)系不清致誤。
19.誤把定點(diǎn)作為切點(diǎn)致誤。
注意題目給的是過點(diǎn)p的切線還是在點(diǎn)p的切線,再不行就把點(diǎn)代進(jìn)去f(x)看點(diǎn)p是不是切點(diǎn)。
15.忽略冪函數(shù)的定義域而致錯。
x的二分之一次方定義域?yàn)?到正無窮。
16.錯誤理解導(dǎo)數(shù)的定義致誤。
17.導(dǎo)數(shù)與極值關(guān)系不清致誤。
f‘派x為0解出的根不一定是極值這個要注意。
18.導(dǎo)數(shù)與單調(diào)性關(guān)系不清致誤。
19.誤把定點(diǎn)作為切點(diǎn)致誤。
注意題目給的是過點(diǎn)p的切線還是在點(diǎn)p的切線,再不行就把點(diǎn)代進(jìn)去f(x)看點(diǎn)p是不是切點(diǎn)。
20.計算定積分忽視細(xì)節(jié)致誤。
22.忽視角的范圍。
23.圖像變換方向把握不準(zhǔn)。
24.忽視正。余弦函數(shù)的有界性。
25.解三角形時出現(xiàn)漏解或增解。
26.向量加減法的幾何意義不明致誤。
27.忽視平面向量基本定理的使用條件致誤。
28.向量的模與數(shù)量積的關(guān)系不清致誤。
29.判別不清向量的夾角。
30.忽略an=sn—sn—1的成立條件。
31.等比數(shù)列求和時,忽略對q是否為1的討論。
32.數(shù)列項(xiàng)數(shù)不清導(dǎo)致錯誤。
33.考慮問題不全面而導(dǎo)致失誤。
34.用錯位相減法求和時處理不當(dāng)。
35.忽視變形轉(zhuǎn)化的等價性。
高考數(shù)學(xué)的易錯點(diǎn)分析三
36.忽視基本不等式應(yīng)用條件。
37.不等式解集的表述形式錯誤。
38.恒成立問題錯誤。
39.目標(biāo)函數(shù)理解錯誤。
40.由三視圖還原空間幾何體不準(zhǔn)確致誤。
41.空間點(diǎn),線,面位置關(guān)系不清致誤。
42.證明過程不嚴(yán)謹(jǐn)致誤。
43.忽視了數(shù)量積和向量夾角的關(guān)系而致誤。
44.忽視異面直線所成角的范圍而致錯。
45.用向量法求線面角時理解有誤而致錯。
46.弄錯向量夾角與二面角的關(guān)系致誤。
47.解折疊問題時沒有理順折疊前后圖形中的不變量和改變量致誤。
48.忽視斜率不存在的情況。
49.忽視圓存在的條件。
50.忽視零截距致誤。
51.弦長公式使用不合理導(dǎo)致解題錯誤。
52.焦點(diǎn)位置不確定導(dǎo)致漏解。
53.忽視限制條件求錯軌跡方程。
54.解決直線與圓錐曲線的相交問題時忽視大于零的情況。
55.兩個原理不清而致錯。
56.排列組合問題錯位或出現(xiàn)重復(fù),遺漏致誤。
57.忽視特殊數(shù)字或特殊位置而致錯。
58.混淆均勻分組與不均勻分組致錯。
59.不相鄰問題方法不當(dāng)而致錯。
60.混淆二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)而致誤。
61.混淆頻率與頻率/組距致誤。
62.分布列的性質(zhì)把握不準(zhǔn)致錯。
63.混淆獨(dú)立事件與互斥事件而致錯。
64.求分布列錯誤而致均值或方差錯誤。
65.正態(tài)分布中概率計算錯誤。
66.忽視類比的對應(yīng)關(guān)系致誤。
67.反證法中假設(shè)不準(zhǔn)確導(dǎo)致證明錯誤。
68.程序框圖中執(zhí)行次數(shù)判斷錯誤。
69.對復(fù)數(shù)的概念認(rèn)識不清致誤。
70.歸納假設(shè)使用不當(dāng)致誤。