亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>學(xué)習(xí)經(jīng)驗(yàn)>

      高中數(shù)學(xué)函數(shù)知識點(diǎn)

      時間: 維維0 分享

      一般的,在一個變化過程中,假設(shè)有兩個變量x、y,如果對于任意一個x都有唯一確定的一個y和它對應(yīng),那么就稱y是x的函數(shù),其中x是自變量,y是因變量,x的取值范圍叫做這個函數(shù)的定義域,相應(yīng)y的取值范圍叫做函數(shù)的值域。下面小編給大家分享一些高中數(shù)學(xué)函數(shù)知識點(diǎn),希望能夠幫助大家,歡迎閱讀!

      高中數(shù)學(xué)函數(shù)知識點(diǎn)

      一、一次函數(shù)定義與定義式:

      自變量x和因變量y有如下關(guān)系:

      y=kx+b

      則此時稱y是x的一次函數(shù)。

      特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

      即:y=kx(k為常數(shù),k≠0)

      二、一次函數(shù)的性質(zhì):

      1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

      即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

      2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

      三、一次函數(shù)的圖像及性質(zhì):

      1.作法與圖形:通過如下3個步驟

      (1)列表;

      (2)描點(diǎn);

      (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

      2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

      3.k,b與函數(shù)圖像所在象限:

      當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

      當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

      當(dāng)b>0時,直線必通過一、二象限;

      當(dāng)b=0時,直線通過原點(diǎn)

      當(dāng)b<0時,直線必通過三、四象限。

      特別地,當(dāng)b=O時,直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

      四、確定一次函數(shù)的表達(dá)式:

      已知點(diǎn)A(x1,y1);B(x2,y2),請確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

      (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

      (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

      (3)解這個二元一次方程,得到k,b的值。

      (4)最后得到一次函數(shù)的表達(dá)式。

      五、一次函數(shù)在生活中的應(yīng)用:

      1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。

      2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

      六、常用公式:

      1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

      2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

      3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

      4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

      高中數(shù)學(xué)函數(shù)知識點(diǎn)梳理

      二次函數(shù)

      I.定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:

      y=ax’2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

      則稱y為x的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II.二次函數(shù)的三種表達(dá)式

      一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x-h)’2+k[拋物線的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x’2的圖像,

      可以看出,二次函數(shù)的圖像是一條拋物線。

      IV.拋物線的性質(zhì)

      1.拋物線是軸對稱圖形。對稱軸為直線

      x=-b/2a。

      對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

      特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2.拋物線有一個頂點(diǎn)P,坐標(biāo)為

      P(-b/2a,(4ac-b’2)/4a)

      當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b’2-4ac=0時,P在x軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

      當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

      |a|越大,則拋物線的開口越小。

      4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

      當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

      當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

      5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點(diǎn)個數(shù)

      Δ=b’2-4ac>0時,拋物線與x軸有2個交點(diǎn)。

      Δ=b’2-4ac=0時,拋物線與x軸有1個交點(diǎn)。

      Δ=b’2-4ac<0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

      V.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,

      當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

      即ax’2+bx+c=0

      此時,函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

      函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      高中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)

      反比例函數(shù)

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

      如圖,上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。

      當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

      當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

      知識點(diǎn):

      1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

      2.對于雙曲線y=k/x,若在分母上加減任意一個實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      對數(shù)函數(shù)

      對數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

      右圖給出對于不同大小a所表示的函數(shù)圖形:

      可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

      (1)對數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

      (2)對數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

      (3)函數(shù)總是通過(1,0)這點(diǎn)。

      (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

      (5)顯然對數(shù)函數(shù)無界。

      高中數(shù)學(xué)函數(shù)知識點(diǎn)相關(guān)文章

      高三數(shù)學(xué)函數(shù)知識點(diǎn)歸納

      高一函數(shù)知識點(diǎn)總結(jié)歸納

      高一函數(shù)知識點(diǎn)總結(jié)必看

      高中數(shù)學(xué)學(xué)習(xí)方法:知識點(diǎn)總結(jié)最全版

      高二數(shù)學(xué)必修一函數(shù)的概念知識點(diǎn)與學(xué)習(xí)方法

      高中數(shù)學(xué)知識點(diǎn)大全

      高一函數(shù)知識點(diǎn)總結(jié)大全

      高中數(shù)學(xué)高一數(shù)學(xué)必修一知識點(diǎn)

      高中數(shù)學(xué)必考知識點(diǎn)歸納整理

      888307