高中數(shù)學橢圓公式大全
高中數(shù)學關(guān)于橢圓的公式有不少,我們一定要好好記憶。下面學習啦小編給你分享高中數(shù)學橢圓的公式,歡迎閱讀。
高中數(shù)學橢圓公式
橢圓的標準方程有兩種,取決于焦點所在的坐標軸:
1)焦點在X軸時,標準方程為:x^2/a^2+y^2/b^2=1 (a>b>0)
2)焦點在Y軸時,標準方程為:x^2/b^2+y^2/a^2=1 (a>b>0)
其中a>0,b>0.a、b中較大者為橢圓長半軸長,較短者為短半軸長(橢圓有兩條對稱軸,對稱軸被橢圓所截,有兩條線段,它們的一半分別叫橢圓的長半軸和短半軸或半長軸和半短軸)當a>b時,焦點在x軸上,焦距為2*(a^2-b^2)^0.5,焦距與長.短半軸的關(guān)系:b^2=a^2-c^2 ,準線方程是x=a^2/c和x=-a^2/c
又及:如果中心在原點,但焦點的位置不明確在X軸或Y軸時,方程可設(shè)為mx^2+ny^2=1(m>0,n>0,m≠n).既標準方程的統(tǒng)一形式.
橢圓的面積是πab.橢圓可以看作圓在某方向上的拉伸,它的參數(shù)方程是:x=acosθ ,y=bsinθ
標準形式的橢圓在x0,y0點的切線就是 :xx0/a^2+yy0/b^2=1
橢圓的面積公式
S=π(圓周率)×a×b(其中a,b分別是橢圓的長半軸,短半軸的長).
或S=π(圓周率)×A×B/4(其中A,B分別是橢圓的長軸,短軸的長).
橢圓的周長公式
橢圓周長沒有公式,有積分式或無限項展開式.
橢圓周長(L)的精確計算要用到積分或無窮級數(shù)的求和.如
L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [橢圓近似周長],其中a為橢圓長半軸,e為離心率
橢圓離心率的定義為橢圓上的點到某焦點的距離和該點到該焦點對應(yīng)的準線的距離之比,設(shè)橢圓上點P到某焦點距離為PF,到對應(yīng)準線距離為PL,則
e=PF/PL
橢圓的準線方程
x=±a^2/C
橢圓的離心率公式
e=c/a
橢圓的焦準距 :橢圓的焦點與其相應(yīng)準線(如焦點(c,0)與準線x=+a^2/C)的距離,數(shù)值=b^2/c
橢圓焦半徑公式 |PF1|=a+ex0 |PF2|=a-ex0
橢圓過右焦點的半徑r=a-ex
過左焦點的半徑r=a+ex
橢圓的通徑:過焦點的垂直于x軸(或y軸)的直線與橢圓的兩焦點A,B之間的距離,數(shù)值=2b^2/a
點與橢圓位置關(guān)系 點M(x0,y0) 橢圓 x^2/a^2+y^2/b^2=1
點在圓內(nèi):x0^2/a^2+y0^2/b^2<1
點在圓上:x0^2/a^2+y0^2/b^2=1
點在圓外:x0^2/a^2+y0^2/b^2>1
直線與橢圓位置關(guān)系
y=kx+m ①
x^2/a^2+y^2/b^2=1 ②
由①②可推出x^2/a^2+(kx+m)^2/b^2=1
相切△=0
相離△<0無交點
相交△>0 可利用弦長公式:A(x1,y1) B(x2,y2)
|AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1/k^2)|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2]
橢圓通徑(定義:圓錐曲線(除圓外)中,過焦點并垂直于軸的弦)公式:2b^2/a
高中數(shù)學知識:橢圓的幾何性質(zhì)
1、范圍:焦點在 軸上 , ;焦點在 軸上 ,
2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點中心對稱。
3、頂點:(a,0)(-a,0)(0,b)(0,-b)
4、離心率: 或 e=√(1-b^2/a²)
5、離心率范圍:0<e<1
6、離心率越大橢圓就越扁,越小則越接近于圓。
7、焦點(當中心為原點時):(-c,0),(c,0)或(0,c),(0,-c)
8、 與 (m為實數(shù))為離心率相同的橢圓。
9、P為橢圓上的一點,a-c≤PF1(或PF2)≤a+c。
10.橢圓的周長等于特定的正弦曲線在一個周期內(nèi)的長度。
猜你感興趣: