初二數(shù)學知識點滬科版
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些初二數(shù)學的知識點,希望對大家有所幫助。
八年級上冊數(shù)學知識點滬科版
1、全等三角形的對應邊、對應角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7、定理1在角的平分線上的點到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點的集合
10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13、推論3等邊三角形的各角都相等,并且每一個角都等于60°
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等于60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18、直角三角形斜邊上的中線等于斜邊上的一半
19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22、定理1關于某條直線對稱的兩個圖形是全等形
23、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
24、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
25、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
26、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
初二數(shù)學三角形知識點歸納
直角三角形
◆備考兵法
1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).
2.在解決直角三角形的有關問題時,應注意以勾股定理為橋梁建立方程(組)來解決問題,實現(xiàn)幾何問題代數(shù)化.
3.在解決直角三角形的相關問題時,要注意題中是否含有特殊角(30°,45°,60°).若有,則應運用一些相關的特殊性質解題.
4.在解決許多非直角三角形的計算與證明問題時,常常通過作高轉化為直角三角形來解決.
5.折疊問題是新中考熱點之一,在處理折疊問題時,動手操作,認真觀察,充分發(fā)揮空間想象力,注意折疊過程中,線段,角發(fā)生的變化,尋找破題思路.
三角形的重心
已知:△ABC中,D為BC中點,E為AC中點,AD與BE交于O,CO延長線交AB于F。求證:F為AB中點。
證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。
重心的幾條性質:
1.重心和三角形3個頂點組成的3個三角形面積相等。
2.重心到三角形3個頂點距離的平方和最小。
3.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3
4重心到頂點的距離與重心到對邊中點的距離之比為2:1。
5.重心是三角形內(nèi)到三邊距離之積的點。
如果用塞瓦定理證,則極易證三條中線交于一點。
一該記的記,該背的背,不要以為理解了就行
有的同學認為,數(shù)學不像英語、史地,要背單詞、背年代、背地名,數(shù)學靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學同樣也離不開記憶。
因此,數(shù)學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數(shù)學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學的定義、法則、公式、定理就很難解數(shù)學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學題,甚至是解數(shù)學難題中得心應手。
1、“方程”的思想
數(shù)學是研究事物的空間形式和數(shù)量關系的,初中最重要的數(shù)量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學中的化學平衡式,現(xiàn)實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學問題,特別是現(xiàn)實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。
初二數(shù)學知識點滬科版相關文章:
初二數(shù)學知識點滬科版
上一篇:北師大版初二數(shù)學知識點
下一篇:八年級重要數(shù)學知識點