亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

      高三數(shù)學(xué)課堂講解的重要知識點

      時間: 贊銳0 分享

      對于一看就會的題型直接pass掉,做精題,精做題。不要什么都做沒有選擇,沒有計劃,如果每一題都做不僅會浪費時間而且也提高不了多少。以下是小編給大家整理的高三數(shù)學(xué)課堂講解的重要知識點,希望大家能夠喜歡!

      高三數(shù)學(xué)課堂講解的重要知識點1

      1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。

      2.二元一次不等式(組)的每一個解(x,y)作為點的坐標(biāo)對應(yīng)平面上的一個點,二元一次不等式(組)的解集對應(yīng)平面直角坐標(biāo)系中的一個半平面(平面區(qū)域)。

      3.直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個平面)對應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對應(yīng)二元一次不等式Ax+By+C<0(或≤0)。

      4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負就可以確定相應(yīng)不等式。

      5.一個二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當(dāng)直線不過原點時常選原點檢驗,當(dāng)直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義?!熬€定界,點定域”。

      6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應(yīng)的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。

      7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應(yīng)把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應(yīng)把邊界畫成虛線。

      8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。

      9.從實際問題中抽象出二元一次不等式(組)的步驟是:

      (1)根據(jù)題意,設(shè)出變量;

      (2)分析問題中的變量,并根據(jù)各個不等關(guān)系列出常量與變量x,y之間的不等式;

      (3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。

      高三數(shù)學(xué)課堂講解的重要知識點2

      定義:

      形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

      定義域和值域:

      當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域。

      性質(zhì):

      對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

      排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

      排除了為0這種可能,即對于x

      排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

      高三數(shù)學(xué)課堂講解的重要知識點3

      1.等差數(shù)列的定義

      如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

      2.等差數(shù)列的通項公式

      若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

      3.等差中項

      如果A=(a+b)/2,那么A叫做a與b的等差中項.

      4.等差數(shù)列的常用性質(zhì)

      (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

      (2)若{an}為等差數(shù)列,且m+n=p+q,

      則am+an=ap+aq(m,n,p,q∈N_).

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

      (5)S2n-1=(2n-1)an.

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項).

      注意:

      一個推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的前n項和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個技巧

      已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

      (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

      (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設(shè)元.

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

      (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項公式法:驗證an=pn+q;

      (4)前n項和公式法:驗證Sn=An2+Bn.

      注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

      高三數(shù)學(xué)課堂講解的重要知識點相關(guān)文章

      高三數(shù)學(xué)重要知識點整理

      高三數(shù)學(xué)知識點總結(jié)及數(shù)學(xué)學(xué)習(xí)方法

      高三數(shù)學(xué)重要知識點總結(jié)

      高三數(shù)學(xué)重點知識總結(jié)大全

      高三數(shù)學(xué)學(xué)習(xí)方法和技巧大全

      高三數(shù)學(xué)知識點梳理匯總

      高三數(shù)學(xué)重要知識點總結(jié),高考數(shù)學(xué)答題時有何技巧

      高三數(shù)學(xué)知識點考點總結(jié)大全

      高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)

      高三數(shù)學(xué)的復(fù)習(xí)重點是什么

      高三數(shù)學(xué)課堂講解的重要知識點

      對于一看就會的題型直接pass掉,做精題,精做題。不要什么都做沒有選擇,沒有計劃,如果每一題都做不僅會浪費時間而且也提高不了多少。以下是小編給大家整理的高三數(shù)學(xué)課堂講解的重要知識點,希望大家能夠喜歡!
      推薦度:
      點擊下載文檔文檔為doc格式

      精選文章

      1071595