八年級上冊數(shù)學(xué)第二章復(fù)習(xí)題有哪些
數(shù)學(xué)一直是同學(xué)們公認(rèn)的難題,想要學(xué)好數(shù)學(xué)不下功夫是不行的。以下是學(xué)習(xí)啦小編分享給大家的八年級上冊數(shù)學(xué)第二章復(fù)習(xí)題,希望可以幫到你!
八年級上冊數(shù)學(xué)第二章復(fù)習(xí)題
一.選擇題(共12小題,每題4分)
1.(2003•煙臺)若3x﹣2y=0,則 等于( )
A. B. C. ﹣ D. 或無意義
2.(2009•上海)用換元法解分式方程 ﹣ +1=0時,如果設(shè) =y,將原方程化為關(guān)于y的整式方程,那么這個整式方程是( )
A.y2+y﹣3=0 B. y2﹣3y+1=0 C. 3y2﹣y+1=0 D. 3y2﹣y﹣1=0
3.(2010•聊城)使分式 無意義的x的值是( )
A.x=﹣ B. x= C. x≠﹣ D. x≠
4.(2011•連云港)小華在電話中問小明:“已知一個三角形三邊長分別是4,9,12,如何求這個三角形的面積?”小明提示說:“可通過作最長邊上的高來求解.”小華根據(jù)小明的提示作出的圖形正確的是( )
A. B. C. D.
5.(2014•永州)下列運算正確的是( )
A.a2•a3=a6 B. ﹣2(a﹣b)=﹣2a﹣2b C. 2x2+3x2=5x4 D. (﹣ )﹣2=4
6.(2014•海南)下列式子從左到右變形是因式分解的是( )
A.a2+4a﹣21=a(a+4)﹣21 B. a2+4a﹣21=(a﹣3)(a+7)
C.(a﹣3)(a+7)=a2+4a﹣21 D. a2+4a﹣21=(a+2)2﹣25
7.(2014•龍東地區(qū))已知關(guān)于x的分式方程 + =1的解是非負(fù)數(shù),則m的取值范圍是( )
A.m>2 B. m≥2 C. m≥2且m≠3 D. m>2且m≠3
8.(2014•來賓)將分式方程 = 去分母后得到的整式方程,正確的是( )
A.x﹣2=2x B. x2﹣2x=2x C. x﹣2=x D. x=2x﹣4
9.(2014•安徽)x2•x3=( )
A.x5 B. x6 C. x8 D. x9
10.(2006•紹興)若有一條公共邊的兩個三角形稱為一對“共邊三角形”,則圖中以BC為公共邊的“共邊三角形”有( )
A.2對 B. 3對 C. 4對 D. 6對
11.(2013•黑龍江)已知關(guān)于x的分式方程 =1的解是非正數(shù),則a的取值范圍是( )
A.a≤﹣1 B. a≤﹣1且a≠﹣2 C. a≤1且a≠﹣2 D. a≤1
12.(2014•本溪一模)如圖,在△ABC,∠C=90°,∠B=15°,AB的中垂線DE交BC于D,E為垂足,若BD=10cm,則AC等于( )
A.10cm B. 8cm C. 5cm D. 2.5cm
二.填空題(共6小題,每題4分)
13.(2003•宜昌)三角形按邊的相等關(guān)系分類如下:三角形 ( )內(nèi)可填入的是 _________ .
14.(2013•株洲)多項式x2+mx+5因式分解得(x+5)(x+n),則m= _________ ,n= _________ .
15.(2014•西寧)計算:a2•a3= _________ .
16.(2014•成都)已知關(guān)于x的分式方程 ﹣ =1的解為負(fù)數(shù),則k的取值范圍是 _________ .
17.(2014•南充)分式方程 =0的解是 _________
18.(2014•沙灣區(qū)模擬)如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結(jié)論正確的是 _________ .
三.解答題(共8小題。19-20每題7分。21-24每題10分。25-26,每題12分)
19.(2013•無錫)計算:
(1) ﹣(﹣2)2+(﹣0.1)0;
(2)(x+1)2﹣(x+2)(x﹣2).
20.(2008•安順)若關(guān)于x的分式方程 的解是正數(shù),求a的取值范圍.
21.(2010•佛山)新知識一般有兩類:第一類是不依賴于其它知識的新知識,如“數(shù)”,“字母表示數(shù)”這樣的初始性的知識;第二類是在某些舊知識的基礎(chǔ)上進(jìn)行聯(lián)系,拓拓廣等方式產(chǎn)生的知識,大多數(shù)知識是這樣的知識.
(1)多項式乘以多項式的法則,是第幾類知識?
(2)在多項式乘以多項式之前,你已擁有的有關(guān)知識是哪些?(寫出三條即可)
(3)請你用已擁有的有關(guān)知識,通過數(shù)和形兩個方面說明多項式乘以多項式的法則是如何或得的?(用(a+b)(c+d)來說明)
22.(2014•鎮(zhèn)江)(1)解方程: ﹣ =0;
(2)解不等式:2+ ≤x,并將它的解集在數(shù)軸上表示出來.
23.(2014•梅州)某校為美化校園,計劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊的綠化費用為0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?
24.(2007•泉州)已知正n邊形的周長為60,邊長為a
(1)當(dāng)n=3時,請直接寫出a的值;
(2)把正n邊形的周長與邊數(shù)同時增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應(yīng)的a與b,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認(rèn)為這種說法對嗎?若不對,請求出不符合這一說法的n的值.
25.(2013•張家界)閱讀材料:求1+2+22+23+24+…+22013的值.
解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時乘以2得:
2S=2+22+23+24+25+…+22013+22014
將下式減去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
請你仿照此法計算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).
26.(2011•連云港)某課題研究小組就圖形面積問題進(jìn)行專題研究,他們發(fā)現(xiàn)如下結(jié)論:
(1)有一條邊對應(yīng)相等的兩個三角形面積之比等于這條邊上的對應(yīng)高之比;
(2)有一個角對應(yīng)相等的兩個三角形面積之比等于夾這個角的兩邊乘積之比;
…
現(xiàn)請你繼續(xù)對下面問題進(jìn)行探究,探究過程可直接應(yīng)用上述結(jié)論.(S表示面積)
問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1,P2三等分邊AB,R1,R2三等分邊AC.經(jīng)探究知 = S△ABC,請證明.
問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC.請?zhí)骄?與S四邊形ABCD之間的數(shù)量關(guān)系.
問題3:如圖3,P1,P2,P3,P4五等分邊AB,Q1,Q2,Q3,Q4五等分邊DC.若S四邊形ABCD=1,求 .
問題4:如圖4,P1,P2,P3四等分邊AB,Q1,Q2,Q3四等分邊DC,P1Q1,P2Q2,P3Q3將四邊形ABCD分成四個部分,面積分別為S1,S2,S3,S4.請直接寫出含有S1,S2,S3,S4的一個等式.
八年級上冊數(shù)學(xué)第二章復(fù)習(xí)資料
一、實數(shù)的概念及分類
1、實數(shù)的分類
一是分類是:正數(shù)、負(fù)數(shù)、0;
另一種分類是:有理數(shù)、無理數(shù)
將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無理數(shù),0,正有理數(shù),正無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
(4)某些三角函數(shù)值,如sin60o等
二、實數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對值
在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0.
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1.零沒有倒數(shù)。
4、數(shù)軸
規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。
八年級上冊數(shù)學(xué)復(fù)習(xí)提綱
第一章 勾股定理
1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;即 。
2.勾股定理的證明:用三個正方形的面積關(guān)系進(jìn)行證明(兩種方法)。
3.勾股定理逆定理:如果三角形的三邊長 , , 滿足 ,那么這個三角形是直角三角形。滿足 的三個正整數(shù)稱為勾股數(shù)。
第二章 實數(shù)
1.平方根和算術(shù)平方根的概念及其性質(zhì):
(1)概念:如果 ,那么 是 的平方根,記作: ;其中 叫做 的算術(shù)平方根。
(2)性質(zhì):①當(dāng) ≥0時, ≥0;當(dāng) <0時, 無意義;② = ;③ 。
2.立方根的概念及其性質(zhì):
(1)概念:若 ,那么 是 的立方根,記作: ;
(2)性質(zhì):① ;② ;③ =
3.實數(shù)的概念及其分類:
(1)概念:實數(shù)是有理數(shù)和無理數(shù)的統(tǒng)稱;
(2)分類:按定義分為有理數(shù)可分為整數(shù)的分?jǐn)?shù);按性質(zhì)分為正數(shù)、負(fù)數(shù)和零。無理數(shù)就是無限不循環(huán)小數(shù);小數(shù)可分為有限小數(shù)、無限循環(huán)小數(shù)和無限不循環(huán)小數(shù);其中有限小數(shù)和無限循環(huán)小數(shù)稱為分?jǐn)?shù)。
4.與實數(shù)有關(guān)的概念: 在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義與有理數(shù)范圍內(nèi)的意義完全一致;在實數(shù)范圍內(nèi),有理數(shù)的運算法則和運算律同樣成立。每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù),即實數(shù)和數(shù)軸上的點是一一對應(yīng)的。因此,數(shù)軸正好可以被實數(shù)填滿。
5.算術(shù)平方根的運算律: ( ≥0, ≥0); ( ≥0, >0)。
第三章 圖形的平移與旋轉(zhuǎn)
1.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過平移,對應(yīng)點所連的線段平行且相等;對應(yīng)線段平行且相等,對應(yīng)角相等。
2.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)。這點定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。旋轉(zhuǎn)不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過旋轉(zhuǎn),圖形點的每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同和角度;任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角;對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
猜你喜歡: