亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

      人教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷

      時(shí)間: 礎(chǔ)鴻1124 分享

        看清知識(shí)的盲點(diǎn)、能力的弱項(xiàng)、丟分的原因。把容易題作對(duì),難題就會(huì)變?nèi)菀?。下面由學(xué)習(xí)啦小編為你整理的人教版數(shù)學(xué)八年級(jí)下冊(cè)期中測(cè)試,希望對(duì)大家有幫助!

        人教版數(shù)學(xué)八年級(jí)下冊(cè)期中測(cè)試

        一、選擇題(共8個(gè)小題,每小題4分,共32分)

        1.下列圖形中,不是軸對(duì)稱圖形的是(  )

        A. B. C. D. [

        2.若等腰三角形的兩邊長(zhǎng)分別是3和6,則這個(gè)三角形的周長(zhǎng)是(  )

        A.12 B.15 C.12或15 D.9

        3.下列命題中,正確的是(  )

        A.形狀相同的兩個(gè)三角形是全等形 B.面積相等的兩個(gè)三角形全等

        C.周長(zhǎng)相等的兩個(gè)三角形全等 D.周長(zhǎng)相等的兩個(gè)等邊三角形全等

        4.如圖,△ABO關(guān)于x軸對(duì)稱,點(diǎn)A的坐標(biāo)為(1,﹣2),則點(diǎn)B的坐標(biāo)為(  )

        A.(﹣1,2)

        B.(﹣1,﹣2)

        C.(1,2)

        D.(﹣2,1)

        5.如圖,在△ABE中,∠BAE=105°,AE的垂直平分線

        MN交BE于點(diǎn)C,且AB=CE,則∠B的度數(shù)是(  )

        A.45° B.60°

        C.50° D.55°

        6.工人師傅常用角尺平分一個(gè)任意角.作法如下:如圖所示,∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,移動(dòng)角尺,使角尺兩邊相同的刻度分別與M,N重合,過(guò)角尺頂點(diǎn)C的射線OC即是∠AOB的平分線.這種作法的道理是(  )

        A.HL B.SSS C.SAS D.ASA

        7.如圖,AB∥DE,AF=DC,若要證明△ABC≌△DEF,還需補(bǔ)充的條件是(  )

        A.AC=DF

        B.AB=DE

        C.∠A=∠D

        D.BC=EF

        8.如 圖,△ABC中,已知∠B和∠C的平分線相交于點(diǎn)F,經(jīng)過(guò)點(diǎn)F作DE∥ BC,交AB于D,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長(zhǎng)為(  )

        A.9

        B.8

        C.7

        D.6

        二、精心填一填(本大題有6個(gè)小題,每小題3分,共18分)

        9.若正n邊形的每個(gè)內(nèi)角都等于150°,則n=______,其內(nèi)角和為_(kāi)_____.

        10.如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,則△ABD的面積是______.

        11.將一副三角板按如圖擺放,圖中∠α的度數(shù)是   .

        12.已知P點(diǎn)是等邊△ABC兩邊垂直平分線的交點(diǎn),等邊△ABC的面積為15,則△ABP的面積為   .

        13.如下圖,在△ABC中,AB=8,BC=6,AC的垂直平分線MN交AB、AC于點(diǎn)M、N.則△BCM的周長(zhǎng)為_(kāi)_____.

        14.如圖,在△ABC中,∠C=90°,AD平分∠BAC,且CD=5,則點(diǎn)D到AB的距離為_(kāi)_____.

        三、解答題(共9個(gè)小題,共70分)

        15.(7分)如圖,點(diǎn)F、C在BE上,BF=CE,AB=DE,∠B=∠E.

        求證:∠A=∠D.

        16.(7分)如圖,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度數(shù).

        17.(8分)△ABC在平面直角坐標(biāo)系中的位置如圖所示.

        (1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;

        (2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為      .

        18.(7分)如圖所示,AD,AE是三角形ABC的高和角平分線,∠B=36°,∠C=76°,求∠DAE的度數(shù).

        19.(7分)如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)F在CB的延長(zhǎng)線上且AB=BF,過(guò)F作EF⊥AC交AB于D,求證:DB=BC.

        20.(8分)如圖,AB=AE,∠1=∠2,∠C=∠D.

        求證:△ABC≌△AED.

        21.(8分)如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.

        (1)證明:AB=AD+BC;

        (2)判斷△CDE的形狀?并說(shuō)明理由.

        22.(8分)如圖,已知AE∥BC,AE平分∠DAC.

        求證:AB=AC.

        23.(10分)如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).

        (1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.

        (2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

        人教版數(shù)學(xué)八年級(jí)下冊(cè)期中測(cè)試答案

        一、選擇題(共8個(gè)小題,每小題4分 ,共32分)

        題號(hào) 1 2 3 4 5 6 7 8

        答案 B B D C C B B A

        二、精心填一填(本大題有6個(gè)小題,每小題3分,共18分)

        9. 12 1800°

        10.5.

        11. 105° .

        12. 5 .

        13.14 .

        14. 5 .

        三、解答題(共9個(gè)小題,共70分)

        1 5.(7分)

        【解答】證明:∵BF=CE,

        ∴BC=EF,

        在△ABC和△DEF中,

        ,

        ∴△ABC≌△DEF(SAS),

        ∴∠A=∠D.

        16.(7分)

        【解答】解:∵∠C=∠ABC=2∠A,

        ∴∠C+∠ABC+∠A=5∠A=180°,

        ∴∠A=36°.

        ∴∠C=∠ABC=2∠A=72°.

        ∵BD⊥AC,

        ∴∠DBC=90°﹣∠C=18°.

        17.(8分)

        【解答】解:(1)△ABC關(guān)于y軸對(duì)稱的△ABlCl如圖所示;

        (2)如圖,點(diǎn)P即為所求作的到點(diǎn)B與點(diǎn)C的距離之和最小,

        點(diǎn)C′的坐標(biāo)為(﹣1,﹣1),

        ∵點(diǎn)B(﹣2,2),

        ∴點(diǎn)P到CC′的距離為 = ,

        ∴OP=1 + = ,

        點(diǎn)P(﹣ ,0).

        故答案為:(﹣ ,0).

        18.(7分)

        【解答】解:∵∠B=36°,∠C=76°,

        ∴∠BAC=180°﹣∠B﹣∠C=68°,

        ∵AE是角平分線,

        ∴∠ EAC= ∠BAC=34°.

        ∵AD是高,∠C=76°,

        ∴∠DAC= 90°﹣∠C=14°,

        ∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.

        19.(7分)

        【解答】證明:∵∠ABC=90°,

        ∴∠ DBF=90°,

        ∴∠DBF=∠ABC,

        ∵EF⊥AC,

        ∴∠AED=∠DBF=90°,

        ∵∠ADE=∠BDF

        ∴∠A=∠F,

        在△FDB和△ACB中,

        ,

        ∴△ABC≌△FBD(ASA),

        ∴DB=BC.

        20.(8分)

        【解答】證明:∵∠1=∠2,

        ∴∠1+∠EAC=∠2+∠EAC,

        即∠BAC=∠EAD,

        ∵在△ABC和△AED中,

        ,

        ∴△ABC≌△AED(AAS).

        21.(8分)

        【解答】證明:(1)∵∠1=∠2,

        ∴DE=CE,

        ∵在RT△ADE和RT△BEC中 , ,

        ∴RT△ADE ≌RT△BEC,(HL)

        ∴AD=BE,

        ∵AB=AE+BE,

        ∴AB=AD+BC;

        (2)∵RT△ADE≌RT△BEC,

        ∴∠AED=∠BCE,

        ∵∠ BCE+∠CEB=90°,

        ∴∠CEB+∠AED=90°,

        ∴∠ DEC=90°,

        ∴△CDE為等腰直角三角形

        22.(8分)

        【解答】證明:∵AE平分∠DAC,

        ∴∠1=∠2,

        ∵AE∥BC,

        ∴∠1=∠B,∠2=∠C,

        ∴∠B=∠C,

        ∴AB=AC.

        23.(10分)

        【解答 】解:(1)經(jīng)過(guò)1秒后,PB=3cm,PC=5cm,CQ=3cm,

        ∵△ABC中,AB=AC,

        ∴在△BPD和△CQP中,

        ,

        ∴△BPD≌△CQP(SAS).

        (2)設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x(x≠3)cm/s,經(jīng)過(guò)ts△BPD與△CQP全等;則可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,

        ∵AB=AC,

        ∴∠B=∠C,

        根據(jù)全等三角形的判定定理SAS可知,有兩種情況:①當(dāng)BD=PC,BP=CQ時(shí),②當(dāng)BD=CQ,BP=PC時(shí),兩三角形全等;

       ?、佼?dāng)BD=PC且BP=CQ時(shí),8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情況;

       ?、贐D=CQ,BP=PC時(shí),5=xt且3t=8﹣3t,解得:x= ;

        故若點(diǎn)Q 的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為 cm/s時(shí),能夠使△BPD與△CQP全等.

      3718109