亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初一學(xué)習(xí)方法>七年級數(shù)學(xué)>

      人教版七年級數(shù)學(xué)期末試卷及答案

      時間: 妙純901 分享

        七年級數(shù)學(xué)期末考試與學(xué)生的學(xué)習(xí)是息息相關(guān)的。小編整理了關(guān)于人教版七年級數(shù)學(xué)期末試卷,希望對大家有幫助!

        人教版七年級數(shù)學(xué)期末試題

        一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個選項中,只有一項是符合題目要求的)

        1. 下列四個數(shù)中最小的數(shù)是(  )

        A. ﹣2 B. 0 C. ﹣ D. 5

        2. 如圖是某幾何體的三視圖,則該幾何體的側(cè)面展開圖是(  )

        A. B. C. D.

        3. 用一副三角板(兩塊)畫角,不可能畫出的角的度數(shù)是(  )

        A. 15° B. 55° C. 75° D. 135°

        4. 實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則|a﹣2.5|=(  )

        A. a﹣2.5 B. 2.5﹣a C. a+2.5 D. ﹣a﹣2.5

        5. 用平面截一個正方體,可能截出的邊數(shù)最多的多邊形是(  )

        A. 七邊形 B. 六邊形 C. 五邊形 D. 四邊形

        6. 下列計算正確的是(  )

        A. (2a2)3=6a6 B. a2•(﹣a3)=﹣a6

        C. ﹣5a5﹣5a5=﹣10a5 D. 15a6÷3a2=5a3

        7. 若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,則正確的為(  )

        A. a

        8. 如圖,一副三角板(直角頂點(diǎn)重合)擺放在桌面上,若∠AOD=150°,則∠BOC等于(  )

        A. 30° B. 45° C. 50° D. 60°

        9. 已知x=y,則下列各式:,其中正確的有(  )

        A. 2個 B. 3個 C. 4個 D. 5個

        10. 一款新型的太陽能熱水器進(jìn)價2000元,標(biāo)價3000元,若商場要求以利潤率不低于5%的售價打折出售,則設(shè)銷售員出售此商品最低可打x折,由題意列方程,得(  )

        A. 3000x=2000(1﹣5%) B.

        C. D.

        二、填空題(本大題共6小題,每小題3分,共18分)

        11. 地球上的海洋面積約為36100萬km2,可表示為科學(xué)記數(shù)法      km2.

        12. 如a<0,ab<0,則|b﹣a+3|﹣|a﹣b﹣9|的值為      .

        13. 如果y=﹣2x,z=2(y﹣1),那么2x﹣y﹣z=      .

        14. 爺爺快八十大壽,小明想在日歷上把這一天圈起來,但不知道是哪一天,于是便去問爸爸,爸爸笑著說,“在日歷上,那一天的上下左右4個日期的和正好等于爺爺?shù)哪挲g”.小明爺爺?shù)纳帐恰     √?

        15. 若k為整數(shù),則使得方程kx﹣5=9x+3的解是負(fù)整數(shù)的k值有      .

        16. 某家庭6月1日時電表顯示的讀數(shù)是121度,6月7日24時電表顯示的讀數(shù)是163度,從電表顯示的讀數(shù)中,估計這個家庭六月份(共30)的總用電量是      度.

        三、解答題(本大題共8小題,共52分)

        17. 計算:

        (1)

        (2).

        18. 解方程:.

        19. 先化簡2(x2y+3xy2)﹣3(x2y﹣1)﹣2x2y﹣2,再求值,其中x=﹣2,y=2.

        20. 小明、小穎、小彬周末計劃去兒童村參加勞動,他們家分別在如圖所示的A、B、C三點(diǎn),他們?nèi)思s定在D處集合.已知集合地點(diǎn)在點(diǎn)C的南偏西30°,且到點(diǎn)的距離是點(diǎn)B到點(diǎn)A,點(diǎn)B到點(diǎn)C的距離的和,請你用直尺(無刻度)、圓規(guī)和量角器在下圖中確定點(diǎn)D的位置.(不寫作法,保留作圖痕跡,寫出結(jié)論)

        21. 已知一條射線OA,如果從O點(diǎn)再引兩條射線OB和OC,使∠AOB=60°,∠BOC=20°,OD是∠AOB的平分線,求∠COD的度數(shù).

        22. 若2x+5y﹣3=0,求4x•32y的值.

        23. 列一元一次方程解應(yīng)用題

        某自行車隊進(jìn)行訓(xùn)練,訓(xùn)練時所有隊員都以35km/h的速度前進(jìn),突然,1號隊員以45km/h的速度獨(dú)自前進(jìn),行進(jìn)一段路程后又調(diào)轉(zhuǎn)車頭,仍以45km/h的速度往回騎,直到與其他隊員匯合,1號隊員從離隊開始到與其他隊員重新匯合共行進(jìn)了15分鐘,問1號隊員掉轉(zhuǎn)車頭時離隊的距離是多少km?

        24. 某區(qū)七年級有3000名學(xué)生參加“中華夢,我的夢”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了200名學(xué)生的得分進(jìn)行統(tǒng)計,請你根據(jù)下列不完整的表格,回答按下列問題:

        成績x(分) 頻數(shù)

        50≤x<60 10

        60≤x<70 16

        70≤x<80 a

        80≤x<90 62

        90≤x<100 72

        (1)a=      ;

        (2)補(bǔ)全頻數(shù)分布直方圖;

        (3)若將得分轉(zhuǎn)化為等級,規(guī)定50≤x<60評為“D”,60≤x<70評為“C”,70≤x<90評為“B”,90≤x<100評為“A”.這次全區(qū)七年級參加競賽的學(xué)生約有多少學(xué)生參賽成績被評為“D”?如果隨機(jī)抽查一名參賽學(xué)生的成績等級,則這名學(xué)生的成績等級是哪一個等級的可能性大?請說明理由.

        人教版七年級數(shù)學(xué)期末試卷參考答案

        一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個選項中,只有一項是符合題目要求的)

        1. 下列四個數(shù)中最小的數(shù)是(  )

        A. ﹣2 B. 0 C. ﹣ D. 5

        考點(diǎn): 有理數(shù)大小比較.

        分析: 根據(jù)有理數(shù)的大小比較方法,找出最小的數(shù)即可.

        解答: 解:∵﹣2<﹣<0<5,

        ∴四個數(shù)中最小的數(shù)是﹣2;

        故選A.

        點(diǎn)評: 此題考查了有理數(shù)的大小比較,用到的知識點(diǎn)是負(fù)數(shù)<0<正數(shù),兩個負(fù)數(shù),絕對值大的反而小,是一道基礎(chǔ)題.

        2. 如圖是某幾何體的三視圖,則該幾何體的側(cè)面展開圖是(  )

        A. B. C. D.

        考點(diǎn): 由三視圖判斷幾何體;幾何體的展開圖.

        分析: 由三視圖可以看出,此幾何體是一個圓柱,指出圓柱的側(cè)面展開圖即可.

        解答: 解:根據(jù)幾何體的三視圖可以得到該幾何體是圓柱,圓柱的側(cè)面展開圖是矩形,且高度=主視圖的高,寬度=俯視圖的周長.

        故選A.

        點(diǎn)評: 本題考查了由三視圖判斷幾何體及幾何體的側(cè)面展開圖的知識,重點(diǎn)考查由三視圖還原實(shí)物圖的能力,及幾何體的空間感知能力,是立體幾何題中的基礎(chǔ)題.

        3. 用一副三角板(兩塊)畫角,不可能畫出的角的度數(shù)是(  )

        A. 15° B. 55° C. 75° D. 135°

        考點(diǎn): 角的計算.

        專題: 計算題.

        分析: 解答此題的關(guān)鍵是分清兩塊三角板的銳角度數(shù)的度數(shù)分別是多少,然后對應(yīng)著4個選項再進(jìn)行組合,看看可能畫出的角的度數(shù)是多少即可.

        解答: 解:兩塊三角板的銳角度數(shù)分別為:30°,60°;45°,45°

        用一塊三角板的45°角和另一塊三角板的30°角組合可畫出15°、75°角,

        用一塊三角板的直角和和另一塊三角板的45°角組合可畫出135°角,

        無論兩塊三角板怎么組合也不能畫出55°角.

        故選B.

        點(diǎn)評: 此題主要考查學(xué)生對角的計算這一知識點(diǎn)的理解和掌握,解答此題的關(guān)鍵是分清兩塊三角板的銳角度數(shù)的度數(shù)分別是多少,比較簡單,屬于基礎(chǔ)題.

        4. 實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則|a﹣2.5|=(  )

        A. a﹣2.5 B. 2.5﹣a C. a+2.5 D. ﹣a﹣2.5

        考點(diǎn): 實(shí)數(shù)與數(shù)軸.

        分析: 首先觀察數(shù)軸,可得a<2.5,然后由絕對值的性質(zhì),可得|a﹣2.5|=﹣(a﹣2.5),則可求得答案.

        解答: 解:如圖可得:a<2.5,

        即a﹣2.5<0,

        則|a﹣2.5|=﹣(a﹣2.5)=2.5﹣a.

        故選B.

        點(diǎn)評: 此題考查了利用數(shù)軸比較實(shí)數(shù)的大小及絕對值的定義等知識.此題比較簡單,注意數(shù)軸上的任意兩個數(shù),右邊的數(shù)總比左邊的數(shù)大.

        5. 用平面截一個正方體,可能截出的邊數(shù)最多的多邊形是(  )

        A. 七邊形 B. 六邊形 C. 五邊形 D. 四邊形

        考點(diǎn): 截一個幾何體.

        分析: 用平面去截正方體,得的截面可能為三角形、四邊形、五邊形、六邊形.

        解答: 解:正方體有六個面,截面與其六個面相交最多得六邊形,故選B.

        點(diǎn)評: 本題考查正方體的截面.正方體的截面的四種情況應(yīng)熟記.

        6. 下列計算正確的是(  )

        A. (2a2)3=6a6 B. a2•(﹣a3)=﹣a6

        C. ﹣5a5﹣5a5=﹣10a5 D. 15a6÷3a2=5a3

        考點(diǎn): 整式的除法;合并同類項;同底數(shù)冪的乘法;冪的乘方與積的乘方.

        分析: 根據(jù)整式的乘除,分別對各選項進(jìn)行計算,即可得出答案.

        解答: 解:A、(2a2)3=8a6,故A錯誤;

        B、a2•(﹣a3)=﹣a5,故B錯誤;

        C、﹣5a5﹣5a5=﹣10a5,故C正確;

        D、15a6÷3a2=5a4,故D錯誤.

        故答案選C.

        點(diǎn)評: 此題考查了整式的乘除,解題時要細(xì)心,注意結(jié)果的符號.

        7. 若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,則正確的為(  )

        A. a

        考點(diǎn): 負(fù)整數(shù)指數(shù)冪;有理數(shù)的乘方;零指數(shù)冪.

        分析: 根據(jù)負(fù)整數(shù)指數(shù)冪、有理數(shù)的乘方、零指數(shù)冪的定義將a、b、c、d的值計算出來即可比較出其值的大小.

        解答: 解:因?yàn)閍=﹣0.32=﹣0.09,

        b=﹣3﹣2=﹣=﹣,

        c=(﹣)﹣2==9,

        d=(﹣)0=1,

        所以c>d>a>b.

        故選D.

        點(diǎn)評: 本題主要考查了

        (1)零指數(shù)冪,負(fù)整數(shù)指數(shù)冪和有理數(shù)的乘方運(yùn)算:負(fù)整數(shù)指數(shù)為正整數(shù)指數(shù)的倒數(shù);任何非0數(shù)的0次冪等于1.

        (2)有理數(shù)比較大?。赫龜?shù)大于0;0大于負(fù)數(shù);兩個負(fù)數(shù),絕對值大數(shù)的反而小.

        8. 如圖,一副三角板(直角頂點(diǎn)重合)擺放在桌面上,若∠AOD=150°,則∠BOC等于(  )

        A. 30° B. 45° C. 50° D. 60°

        考點(diǎn): 角的計算.

        專題: 計算題.

        分析: 從如圖可以看出,∠BOC的度數(shù)正好是兩直角相加減去∠AOD的度數(shù),從而問題可解.

        解答: 解:∵∠AOB=∠COD=90°,∠AOD=150°

        ∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.

        故選A.

        點(diǎn)評: 此題主要考查學(xué)生對角的計算的理解和掌握,解答此題的關(guān)鍵是讓學(xué)生通過觀察圖示,發(fā)現(xiàn)幾個角之間的關(guān)系.

        9. 已知x=y,則下列各式:,其中正確的有(  )

        A. 2個 B. 3個 C. 4個 D. 5個

        考點(diǎn): 等式的性質(zhì).

        分析: 根據(jù)等式的性質(zhì)進(jìn)行解答即可.

        解答: 解:∵x=y,

        ∴x﹣1=y﹣1,故本式正確;

        ∵x=y,

        ∴2x=2y,故2x=5y錯誤;

        ∵x=y,

        ∴﹣x=﹣y,故本式正確;

        ∵x=y,

        ∴x﹣3=y﹣3,

        ∴=,故本式正確;

        當(dāng)x=y=0時,無意義,故=1錯誤.

        故選B.

        點(diǎn)評: 本題考查的是等式的性質(zhì),熟知等式的基本性質(zhì)1,2是解答此題的關(guān)鍵.

        10. 一款新型的太陽能熱水器進(jìn)價2000元,標(biāo)價3000元,若商場要求以利潤率不低于5%的售價打折出售,則設(shè)銷售員出售此商品最低可打x折,由題意列方程,得(  )

        A. 3000x=2000(1﹣5%) B.

        C. D.

        考點(diǎn): 由實(shí)際問題抽象出一元一次方程.

        分析: 當(dāng)利潤率是5%時,售價最低,根據(jù)利潤率的概念即可求出售價,進(jìn)而就可以求出打幾折.

        解答: 解:設(shè)銷售員出售此商品最低可打x折,

        根據(jù)題意得:3000×=2000(1+5%),

        故選D.

        點(diǎn)評: 本題考查了由實(shí)際問題抽象出一元一次方程的知識,理解什么情況下售價最低,并且理解打折的含義,是解決本題的關(guān)鍵.

        二、填空題(本大題共6小題,每小題3分,共18分)

        11. 地球上的海洋面積約為36100萬km2,可表示為科學(xué)記數(shù)法 3.61×108 km2.

        考點(diǎn): 科學(xué)記數(shù)法—表示較大的數(shù).

        分析: 科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點(diǎn),由于36100萬有9位,所以可以確定n=9﹣1=8.

        解答: 解:36100萬=361 000 000=3.61×108.

        故答案為:3.61×108.

        點(diǎn)評: 此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.

        12. 如a<0,ab<0,則|b﹣a+3|﹣|a﹣b﹣9|的值為 ﹣6 .

        考點(diǎn): 整式的加減;絕對值.

        專題: 計算題.

        分析: 由已知不等式判斷得出絕對值里邊式子的正負(fù),利用絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.

        解答: 解:∵a<0,ab<0,

        ∴b>0,

        ∴b﹣a+3>0,a﹣b﹣9<0,

        則原式=b﹣a+3+a﹣b﹣9=﹣6.

        故答案為:﹣6.

        點(diǎn)評: 此題考查了整式的加減,以及絕對值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

        13. 如果y=﹣2x,z=2(y﹣1),那么2x﹣y﹣z= 8x+2 .

        考點(diǎn): 整式的加減.

        專題: 計算題.

        分析: 將第一個等式代入第二個等式中表示出z,將表示出的z與y代入原式計算即可得到結(jié)果.

        解答: 解:將y=﹣2x代入得:z=2(y﹣1)=2(﹣2x﹣1)=﹣4x﹣2,

        則2x﹣y﹣z=2x﹣(﹣2x)﹣(﹣4x﹣2)=2x+2x+4x+2=8x+2.

        故答案為:8x+2.

        點(diǎn)評: 此題考查了整式的加減,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

        14. 爺爺快八十大壽,小明想在日歷上把這一天圈起來,但不知道是哪一天,于是便去問爸爸,爸爸笑著說,“在日歷上,那一天的上下左右4個日期的和正好等于爺爺?shù)哪挲g”.小明爺爺?shù)纳帐恰?0 號.

        考點(diǎn): 一元一次方程的應(yīng)用.

        分析: 要求小莉的爺爺?shù)纳眨鸵鞔_日歷上“上下左右4個日期”的排布方法.依此列方程求解.

        解答: 解:設(shè)那一天是x,則左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,

        依題意得x﹣1+x+1+x﹣7+x+7=80

        解得:x=20

        故答案是:20.

        點(diǎn)評: 本題考查了一元一次方程的應(yīng)用.此題關(guān)鍵是弄準(zhǔn)日歷的規(guī)律,知道左右上下的規(guī)律,然后依此列方程.

        15. 若k為整數(shù),則使得方程kx﹣5=9x+3的解是負(fù)整數(shù)的k值有 1或5或7或8 .

        考點(diǎn): 一元一次方程的解.

        專題: 計算題.

        分析: 方程移項合并,將x系數(shù)化為1,表示出方程的解,根據(jù)k為整數(shù)即可確定出k的值.

        解答: 解:方程移項合并得:(k﹣9)x=8,

        解得:x=,

        由x為負(fù)整數(shù),k為整數(shù),得到k=8時,x=﹣8;k=5時,x=﹣2;當(dāng)k=7時,x=﹣4,k=1,x=﹣1,

        則k的值,1或5或7或8.

        故答案為:1或5或7或8

        點(diǎn)評: 此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.

        16. 某家庭6月1日時電表顯示的讀數(shù)是121度,6月7日24時電表顯示的讀數(shù)是163度,從電表顯示的讀數(shù)中,估計這個家庭六月份(共30)的總用電量是 180 度.

        考點(diǎn): 用樣本估計總體.

        分析: 先計算出6月1日至7日每天的平均用電量,再乘以30即可解答.

        解答: 解:6月1日到6月7日七天共用電163﹣121=42度,

        則平均每天用電為42÷7=6度,

        六月份30天總用電量為6×30=180度.

        故答案為180.

        點(diǎn)評: 此題考查了用樣本估計總體,計算出前7天的用電量,即可估計30天的用電量.

        三、解答題(本大題共8小題,共52分)

        17. 計算:

        (1)

        (2).

        考點(diǎn): 有理數(shù)的混合運(yùn)算;單項式乘單項式.

        專題: 計算題.

        分析: (1)原式先計算乘方運(yùn)算,再計算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;

        (2)原式先計算乘方運(yùn)算,再利用單項式乘以單項式法則計算即可得到結(jié)果.

        解答: 解:(1)原式=﹣1×(﹣)×5+9×(﹣)

        =3+2﹣

        =3;

        (2)原式=3a4b3c•a2c4

        =3a6b3c5.

        點(diǎn)評: 此題考查了有理數(shù)的混合運(yùn)算,以及單項式乘單項式,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

        18. 解方程:.

        考點(diǎn): 解一元一次方程.

        專題: 計算題.

        分析: 方程去分母后,去括號,移項合并,將x系數(shù)化為1,即可求出解.

        解答: 解:去分母得:4(2x﹣1)﹣3(2x﹣3)=12,

        去括號得:8x﹣4﹣6x+9=12,

        移項得:8x﹣6x=12+4﹣9,

        合并得:2x=7,

        解得:x=3.5.

        點(diǎn)評: 此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,將x系數(shù)化為1,求出解.

        19. 先化簡2(x2y+3xy2)﹣3(x2y﹣1)﹣2x2y﹣2,再求值,其中x=﹣2,y=2.

        考點(diǎn): 整式的加減—化簡求值.

        分析: 原式去括號合并得到最簡結(jié)果,將x與y的值代入計算即可求出值.

        解答: 解:原式=2x2y+6xy2﹣3x2y+3﹣2x2y﹣2

        =﹣3x2y+6xy2﹣2,

        當(dāng)x=﹣2,y=2時,原式=﹣24﹣24﹣2=﹣50.

        點(diǎn)評: 此題考查了整式的加減﹣化簡求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

        20. 小明、小穎、小彬周末計劃去兒童村參加勞動,他們家分別在如圖所示的A、B、C三點(diǎn),他們?nèi)思s定在D處集合.已知集合地點(diǎn)在點(diǎn)C的南偏西30°,且到點(diǎn)的距離是點(diǎn)B到點(diǎn)A,點(diǎn)B到點(diǎn)C的距離的和,請你用直尺(無刻度)、圓規(guī)和量角器在下圖中確定點(diǎn)D的位置.(不寫作法,保留作圖痕跡,寫出結(jié)論)

        考點(diǎn): 作圖—應(yīng)用與設(shè)計作圖;方向角.

        分析: 首先作出過點(diǎn)C南偏西30°的射線,進(jìn)而截取CD=BC+AB,即可得出答案.

        解答: 解:如圖所示:D點(diǎn)位置即為所求.

        點(diǎn)評: 此題主要考查了應(yīng)用設(shè)計與作圖以及方向角問題,根據(jù)題意利用圓規(guī)截取得出CD=BC+AB進(jìn)而得出D點(diǎn)位置是解題關(guān)鍵.

        21. 已知一條射線OA,如果從O點(diǎn)再引兩條射線OB和OC,使∠AOB=60°,∠BOC=20°,OD是∠AOB的平分線,求∠COD的度數(shù).

        考點(diǎn): 角的計算;角平分線的定義.

        分析: 分類討論:OC在∠AOB外,OC在∠AOB內(nèi)兩種情況.

        根據(jù)角平分線的性質(zhì),可得∠BOD與∠AOB的關(guān)系,再根據(jù)角的和差,可得答案.

        解答: 解:①OC在∠AOB外,如圖

        OD是∠AOB的平分線,∠AOB=60°,

        ∠B0D=∠AOB=30°,

        ∠COD=∠B0D+∠BOC

        =30°+20°

        =50°;

        ②OC在∠AOB內(nèi),如圖

        OD是∠AOB的平分線,∠AOB=60°,

        ∠B0D=∠AOB=30°,

        ∠COD=∠B0D﹣∠BOC

        =30°﹣20°

        =10°.

        點(diǎn)評: 本題考查了角的計算,先根據(jù)角平分線的性質(zhì),求出∠BOD,在由角的和差,得出答案,分了討論是解題關(guān)鍵.

        22. 若2x+5y﹣3=0,求4x•32y的值.

        考點(diǎn): 同底數(shù)冪的乘法;冪的乘方與積的乘方.

        分析: 由方程可得2x+5y=3,再把所求的代數(shù)式化為同為2的底數(shù)的代數(shù)式,運(yùn)用同底數(shù)冪的乘法的性質(zhì)計算,最后運(yùn)用整體代入法求解即可.

        解答: 解:4x•32y=22x•25y=22x+5y

        ∵2x+5y﹣3=0,即2x+5y=3,

        ∴原式=23=8.

        點(diǎn)評: 本題考查了同底數(shù)冪的乘法,冪的乘方,積的乘方,理清指數(shù)的變化是解題的關(guān)鍵.

        23. 列一元一次方程解應(yīng)用題

        某自行車隊進(jìn)行訓(xùn)練,訓(xùn)練時所有隊員都以35km/h的速度前進(jìn),突然,1號隊員以45km/h的速度獨(dú)自前進(jìn),行進(jìn)一段路程后又調(diào)轉(zhuǎn)車頭,仍以45km/h的速度往回騎,直到與其他隊員匯合,1號隊員從離隊開始到與其他隊員重新匯合共行進(jìn)了15分鐘,問1號隊員掉轉(zhuǎn)車頭時離隊的距離是多少km?

        考點(diǎn): 一元一次方程的應(yīng)用.

        分析: 設(shè)1號隊員掉轉(zhuǎn)車頭時獨(dú)自前進(jìn)的時間為x小時,則回走用的時間為(0.25﹣x)小時,根據(jù)追擊問題與相遇問題的數(shù)量關(guān)系建立方程求出其解既可以求出結(jié)論.

        解答: 解:設(shè)1號隊員掉轉(zhuǎn)車頭時獨(dú)自前進(jìn)的時間為x小時,則回走用的時間為(0.25﹣x)小時,由題意,得

        (45﹣35)x=(45+35)(0.25﹣x),

        解得:x=.

        ∴1號隊員掉轉(zhuǎn)車頭時離隊的距離是:(45﹣35)×=km.

        答:1號隊員掉轉(zhuǎn)車頭時離隊的距離是km.

        點(diǎn)評: 本題考查了行程問題的數(shù)量關(guān)系的運(yùn)用,追擊問題的數(shù)量關(guān)系的運(yùn)用,相遇問題的數(shù)量關(guān)系的運(yùn)用,解答時根據(jù)行程問題的數(shù)量關(guān)系建立方程是關(guān)鍵.

        24. 某區(qū)七年級有3000名學(xué)生參加“中華夢,我的夢”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了200名學(xué)生的得分進(jìn)行統(tǒng)計,請你根據(jù)下列不完整的表格,回答按下列問題:

        成績x(分) 頻數(shù)

        50≤x<60 10

        60≤x<70 16

        70≤x<80 a

        80≤x<90 62

        90≤x<100 72

        (1)a= 40 ;

        (2)補(bǔ)全頻數(shù)分布直方圖;

        (3)若將得分轉(zhuǎn)化為等級,規(guī)定50≤x<60評為“D”,60≤x<70評為“C”,70≤x<90評為“B”,90≤x<100評為“A”.這次全區(qū)七年級參加競賽的學(xué)生約有多少學(xué)生參賽成績被評為“D”?如果隨機(jī)抽查一名參賽學(xué)生的成績等級,則這名學(xué)生的成績等級是哪一個等級的可能性大?請說明理由.

        考點(diǎn): 頻數(shù)(率)分布直方圖;頻數(shù)(率)分布表;可能性的大小.

        分析: (1)根據(jù)樣本容量為200,再利用表格中數(shù)據(jù)可得出a的值;

        (2)利用表中數(shù)據(jù)得出70≤x<80分?jǐn)?shù)段的頻數(shù),補(bǔ)全條形圖即可;

        (3)找出樣本中評為“D”的百分比,估計出總體中“D”的人數(shù)即可;求出等級為A、B、C、D的概率,表示大小,即可作出判斷.

        解答: 解:(1)根據(jù)題意得出;a=200﹣10﹣16﹣62﹣72=40,

        故答案為:40;

        (2)補(bǔ)全條形統(tǒng)計圖,如圖所示:

        ;

        (2)由表格可知:評為“D”的頻率是=,

        由此估計全區(qū)八年級參加競賽的學(xué)生約有×3000=150(人)被評為“D”;

        ∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,

        ∴P(B)>P(A)>P(C)>P(D),

        ∴隨機(jī)調(diào)查一名參數(shù)學(xué)生的成績等級“B”的可能性較大.

        點(diǎn)評: 此題考查了頻數(shù)(率)分布直方圖,頻數(shù)(率)分布表,以及可能性大小,弄清題意是解本題的關(guān)鍵.

      人教版七年級數(shù)學(xué)期末試卷及答案相關(guān)文章:

      1.七年級數(shù)學(xué)期末考試卷及答案

      2.人教版七年級數(shù)學(xué)上冊期末測試卷

      3.人教版七年級數(shù)學(xué)上冊期末試卷

      4.七年級數(shù)學(xué)期末考試卷人教版

      5.七年級數(shù)學(xué)期末考試試卷

      1924914