亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 >

      第一學期高二數(shù)學期中題目

      時間: 詩盈1200 分享

        學習好數(shù)學不是一件簡單的事情,大家要動起手來哦,今天小編就給大家分享一下高二數(shù)學,希望大家一起閱讀學習一下哦

        高二上學期數(shù)學期中試題文科試卷

        一、選擇題:本題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.

        1.已知集合M={x|2x 1},N={x|-2 x 2},則 (  )

        A.[-2,1] B.[0,2] C.(0,2] D.[-2,2]

        2.“x 2”是“ ”的(  )

        A.必要不充分條件 B.充分不必要條件

        C.充要條件 D.既不充分也不必要條件

        3.已知 ,b=20.3,c=0.32,則a,b,c三者的大小關系是(  )

        A.b c a B.b a c C.a b c D.c b a

        4.2路公共汽車每5分鐘發(fā)車一次,小明到乘車點的時刻是隨機的,則他候車時間不超過兩分鐘的概率是(  )

        A. B. C. D.

        5.已知高一(1)班有48名學生,班主任將學生隨機編號為01,02,……,48,用系統(tǒng)抽樣方法,從中抽8人.若05號被抽到了,則下列編號的學生被抽到的是(  )

        A.16 B.22 C.29 D.33

        6.直線2x+3y-9=0與直線6x+my+12=0平行,則兩直線間的距離為(  )

        A. B. C.21 D.13

        7.某幾何體的三視圖如圖所示,圖中每一個小方格均為正方形,且邊長為1,則該幾何體的體積為( )

        A. B.

        C. D.

        8.在△ABC中, ,則(  )

        A. B.

        C. D.

        9.執(zhí)行如圖所示的程序框圖,若輸出k的值為8,則判斷框內

        可填入的條件是(  )

        A.s≤2524?         B.s≤56?

        C.s≤1112? D.s≤34?

        10.已知a,b R,且 ,則 的最小值為(  )

        A. B.4

        C. D.3

        11.已知四棱錐P﹣ABCD的頂點都在球O的球面上,底面ABCD是邊長為2的正方形,且PA⊥面ABCD,若四棱錐的體積為 ,則該球的體積為(  )

        A.64 π B.8 π

        C.24π D.6π

        12.定義在R上的奇函數(shù)f(x)滿足: ,則函數(shù) 的所有零點之和為(  )

        A. B.

        C. D.

        二、填空題:本題共4個小題,每小題5分,共20分.

        13.在等比數(shù)列{an}中,已知 =8,則 =__________

        14. 已知變量x,y滿足約束條件 ,則目標函數(shù)z=2x y的最大值是________

        15.將函數(shù)f(x)=sin( 2x)的圖象向左平移 個長度單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調遞減區(qū)間是__________

        16.由直線x+2y 7=0上一點P引圓x2+y2 2x+4y+2=0的一條切線,切點為A,則|PA|的最小值為__________

        二.解答題:共6小題,共70分.解答題應寫出必要的文字說明、證明過程及演算步驟.

        17.(本小題滿分10分)已知△ABC的內角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.

        (1)求角C的大小;

        (2)若c= ,a2+b2=10,求△ABC的面積.

        18.(本小題滿分12分)對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的

        分組 頻數(shù) 頻率

        [10,15) 10 0.25

        [15,20) 25 n

        [20,25) m p

        [25,30) 2 0.05

        合計 M 1

        統(tǒng)計表和頻率分布直方圖如下:

        (1)求出表中M,p及圖中a的值;

        (2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數(shù)在區(qū)間[15,20)內的人數(shù);

        (3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內的概率.

        19.(本小題滿分12分)在直三棱柱ABC 中, 平面 ,其垂足 在直線 上.

        (1)求證: ;

        (2)若 P為AC的中點,求P

        到平面 的距離.

        20.(本小題滿分12分)設數(shù)列{an}的前n項和Sn滿足Sn= ,且a1,a2+1,a3成等差數(shù)列.

        (1)求數(shù)列{an}的通項公式;

        (2)記數(shù)列{1an}的前n項和為Tn,求證: Tn<1.

        21.(本小題滿分12分)已知圓C經(jīng)過原點O(0,0)且與直線y=2x 8相切于點P(4,0).

        (1)求圓C的方程;

        (2)已知直線l經(jīng)過點(4, 5),且與圓C相交于M,N兩點,若|MN|=2,求出直線l的方程.

        22.(本小題滿分12分)已知 .

        (1)若 ,求t的值;

        (2)當 ,且 有最小值2時,求 的值;

        (3)當 時,有 恒成立,求實數(shù) 的取值范圍.

        文科數(shù)學試卷答案

        一. 選擇題(共12小題)

        1 2 3 4 5 6 7 8 9 10 11 12

        C B A A C B B C C C B C

        二、填空題

        13. 4 14.2

        15. 16.

        二.解答題(共6小題)

        17.解:(1)∵△ABC的內角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB,

        ∴2sinAcosC=sinBcosC+sinCcosB,

        ∵A+B+C=π,∴2sinAcosC=sin(B+C)=sinA,

        ∴cosC= ,∵0

        (2)∵c= ,a2+b2=10, ,

        ∴由余弦定理得:c2=a2+b2﹣2abcosC,

        即7=10﹣ab,解得ab=3,

        ∴△ABC的面積S= = = .(10分)

        18. 解:(1)由分組[10,15)內的頻數(shù)是10,頻率是0.25知, ,所以M=40.

        因為頻數(shù)之和為40,所以 .

        因為a是對應分組[15,20)的頻率與組距的商,所以 .(4分)

        (2)因為該校高三學生有360人,分組[15,20)內的頻率是0.625,

        所以估計該校高三學生參加社區(qū)服務的次數(shù)在此區(qū)間內的人數(shù)為360×0.625=225人.(7分)

        (3)這個樣本參加社區(qū)服務的次數(shù)不少于20次的學生共有3+2=5人

        設在區(qū)間[20,25)內的人為{a1,a2,a3},在區(qū)間[25,30)內的人為{b1,b2}.

        則任選2人共有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)10種情況,(9分)

        而兩人都在[20,25)內共有(a1,a2),(a1,a3),(a2,a3)3種情況,

        至多一人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內的概率為 .(12分)

        19.解:

        (4分)

        則P到平面 距離為 (12分)

        20.解: (1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n≥2),即an=2an-1(n≥2).從而a2=2a1,a3=2a2=4a1.

        又因為a1,a2+1,a3成等差數(shù)列,即a1+a3=2(a2+1),所以a1+4a1=2(2a1+1),解得a1=2.

        所以數(shù)列{an}是首項為2,公比為2的等比數(shù)列.

        故an=2n.(6分)

        (2)由(1)得1an=12n,所以Tn=12+122+…+12n=12[1-(12)n]1-12=1-12n.

        由1-12n.在自然數(shù)集上遞增,可得n=1時取得最小值 ,

        且1-12n<1,

        則 ≤Tn<1.(12分)

        21.解:(1)由已知,得圓心在經(jīng)過點P(4,0)且與y=2x﹣8垂直的直線 上,它又在線段OP的中垂線x=2上,

        所以求得圓心C(2,1),半徑為 .

        所以圓C的方程為(x﹣2)2+(y﹣1)2=5.(6分)

        (2)①當直線l的斜率存在時,

        設直線l的方程為 ,即 .

        因為|MN|=2,圓C的半徑為 ,所以圓心到直線的距離d=2

        ,解得 ,所以直線 ,

       ?、诋斝甭什淮嬖跁r,即直線l:x=4,符合題意

        綜上直線l為 或x=4(12分)

        23.解:(1)

        即 (2分)

        (2) ,

        又 在 單調遞增,

        當 ,解得

        當 ,

        解得 (舍去)

        所以 (7分)

        (3) ,即

        , , , ,

        ,依題意有

        而函數(shù)

        因為 , ,所以 .(12分)

        高二上學期數(shù)學(文)期中試題

        第I卷 (選擇題, 共60分)

        一、選擇題(共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的.)

        1.拋物線的準線方程為

        A. B. C. D.

        2.已知的頂點在橢圓上,頂點是橢圓的一個焦點,且橢圓

        的另一個焦點在邊上,則的周長是

        A. 8 B. 12 C.16 D.

        3. 圓與圓的位置關系是

        A. 內切 B. 外切 C. 相離 D. 相交

        4. 若橢圓的弦被點平分,則此弦所在的直線方程為

        5.已知直線與平行,則的值是

        A. 0或1 B.1或 C.0或 D.

        6.過拋物線的焦點,且傾斜角為的直線交拋物線于不同的兩點、,則

        弦長的值為

        A.2 B.1 C. D.4

        7.設經(jīng)過點的等軸雙曲線的焦點為,此雙曲線上一點滿足

        , 則的面積為

        A. B. C. D.

        8.已知直線與雙曲線的右支有兩個不同的交點,則的取值范圍為

        A. B. C. D.

        9.若橢圓的左焦點為,為原點,點是橢圓上的任意一點,則

        的最大值為

        A. 2 B. 3 C. 6 D.8

        10.在正中,、邊上的高分別為、,則以、為焦點,且過

        、的橢圓與雙曲線的離心率分別為,則的值為

        A. B. 1 C. D. 2

        11.已知拋物線的焦點為,為原點,點是拋物線的準線上的一動點,

        點在拋物線上,且,則的最小值為

        A. B. C. D.

        12.已知拋物線的頂點在坐標原點,焦點,為拋物線上的任意一點,過點

        作圓的切線,切點分別為,圓心為,則四邊形

        的面積最小值為

        A. B. C. D.

        第Ⅱ卷 (非選擇題, 共90分)

        二、填空題(共4小題,每小題5分,共20分,將答案填在答題卡相應的位置上.)

        13. 已知實數(shù)滿足,若,則的最大值是 .

        14. 與雙曲線有相同的漸近線,并且過點的雙曲線的標準方程

        是 .

        15. 若直線與曲線有公共點,則b的取值范圍是 .

        16.已知雙曲線的左、右頂點分別為、,是上

        的一點,為等腰三角形,且外接圓面積為,則雙曲線的離心率

        為 .

        三、解答題(本大題共6小題,共70分,解答應寫出文字說明,證明過程或演算步驟.)

        17. (本題滿分10分)

        已知,,.

        (Ⅰ)求過點且與直線垂直的直線方程;

        (Ⅱ)經(jīng)過點的直線把的面積分割成兩部分,求直線的方程.

        18. (本題滿分12分)

        已知圓過點,圓心.

        (Ⅰ)求圓的標準方程;

        (Ⅱ)如果過點且斜率為的直線與圓沒有公共點,求實數(shù)的取值范圍.

        19. (本題滿分12分)

        已知橢圓的焦點是雙曲線的頂點,雙曲線的焦點是橢圓的頂點.

        (Ⅰ)求橢圓的離心率;

        (Ⅱ)若分別是橢圓的左、右頂點,為橢圓上異于的一點,

        求證:直線和直線的斜率之積為定值.

        20. (本題滿分12分)

        已知拋物線的頂點是坐標原點,焦點在軸正半軸上,直線與拋物線相切.

        (Ⅰ)求拋物線的標準方程;

        (Ⅱ)若斜率為2的直線與拋物線交于、兩點,,求直線的方程.

        21. (本題滿分12分)

        已知橢圓的左右焦點分別為,點為橢圓的一個

        短軸頂點,.

        (Ⅰ)求橢圓的標準方程;

        (Ⅱ)若經(jīng)過橢圓左焦點的直線交橢圓于兩點,為橢圓的右頂點,

        求面積的最大值.

        22. (本題滿分12分)

        曲線:,直線關于直線對稱的直線為,

        直線與曲線分別交于點、和、,記直線的斜率為.

        (Ⅰ)求證: ;

        (Ⅱ)當變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標;

        若不恒過定點,請說明理由.

        答案

        一.選擇題

        DCBBC DADCA BD

        二.填空題

        高二文科數(shù)學上學期期中試題

        一、選擇題(本大題共12小題,每小題5分,共60分.在每小題所給的四個答案中有且只有

        一個答案是正確的.)

        1.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),則A中元素的個數(shù)為(  )

        A.9 B.8 C.5 D.4

        2.在等差數(shù)列 中,已知 ,則該數(shù)列前11項和 =( )

        A.48 B. 68 C.88 D.176

        3.函數(shù)f(x)= 的圖象大致為(  )

        A. B.

        C. D

        4.已知向量 , 滿足| |=1, =﹣1,則 •(2 )=(  )

        A.4 B.3 C.2 D.0

        5.已知△ABC的三邊長成公比為 的等比數(shù)列,則其最大角的余弦值為( )

        A. B. C. D.

        6. 已知 ,則函數(shù) 的最大值是( )

        . . . .

        7.鈍角三角形ABC的面積是 ,AB=1,BC= ,則 AC=( )

        A. 1 B. 2 C. D. 5

        8.設a,b為空間的兩條直線,α,β為空間的兩個平面,給出下列命題:

       ?、偃鬭∥α,a∥β,則α∥β;②若a⊥α,a⊥β,則α∥β;

       ?、廴鬭∥α,b∥α,則a∥b;④若a⊥α,b⊥α,則a∥b.

        上述命題中,所有正確命題的個數(shù)是 ( )

        A. 0 B.1 C. 2 D. 3

        9.直線 關于直線 對稱的直線方程為( )

        A. B. C. D.

        10.已知等差數(shù)列 的公差不為零, ,且 成等比數(shù)列,則數(shù)列 的公差等于 ( )

        A.1 B.2 C.3 D.4

        11.下列函數(shù)中,周期為 ,且在 上單調遞增的奇函數(shù)是 ( )

        A. B.

        C. D.

        12.設 ,對于使 恒成立的所有常數(shù) 中,我們把 的最大值 叫做 的下確界.若 ,且 ,則 的下確界為( )

        . . . .

        二、填空題(本大題共4小題,每小題5分,共20分.)

        13.設{an}是等差 數(shù)列,且a1=3,a2+a5=36,則{an}的通項公式為_______________

        14.不等式 的解集是________________________________

        15.設函數(shù)f(x)=cos(ωx﹣ )(ω>0),若f(x)≤f( )對任意的實數(shù)x都成立,則ω的最小值為   .

        16.某企業(yè)生產產品A和產品B需要甲、乙兩種材料.生產一件產品A需要甲材料30kg,乙材料5kg,用5個工時;生產一件產品B需要甲材料20kg,乙材料10kg,用4個工時.生產一件產品A的利潤為60元,生產一件產品B的利潤為80元.該企業(yè)現(xiàn)有甲材料300kg,乙材料90kg,則在不超過80個工時的條件下,生產產品A、產品B的利潤之和的最大值為 _______元.

        三、解答題(本大題共6小題,共70分,解答應寫出文字說明、證明過程或演算過程.)

        17. (本小題滿分10分)

        在 中,角 所對的邊分別為 ,且 , , .

        (1)求 的值;(2)求 的面積.

        18. (本小題滿分12分)

        設數(shù)列 的前 項和為 , .

        (Ⅰ)求數(shù)列 的通項公式;

        (Ⅱ)數(shù)列 是首項為 ,公差為 的等差數(shù)列,求數(shù)列 的前 項和 .

        19. (本小題滿分12分)

        若直線l:x-y+1=0與圓C:(x-a)2+y2=2有公共點,

        (1)若直線l與圓C相切時,求a的值

        (2)若直線l與圓C相交弦長為 時,求a的值

        20.(本小題滿分12分)

        已知函數(shù) ( ),(1)求函數(shù)f(x)的值域;(2)若 時,不等式 恒成立,求實數(shù)m的取值范圍;

        21(本小題滿分12分)

        已知函數(shù) .

        (1)若 的解集為 ,求 , 的值;

        (2) 當 時,解關于 的不等式 (結果用 表示).

        22. (本小題滿分12分)

        已知數(shù)列 中,其前 項和 滿足 ( ).

        (1)求證:數(shù)列 為等比數(shù)列,并求 的通項公式;

        (2)設 , 求數(shù)列 的前 項和 ;

        期中考答案

        1 2 3 4 5 6 7 8 9 10 11 12

        A C B B A C C C D B D D

        13.an=6n-3 14.{x|x<3或x>=4} 15.2/3 16.840

        17、解:(1) , …………………………………2分

        ………………………5分 (2)

        …………… ………8分

        S=1/2absinc=根號7/4 …………… ………10分

        18.(本題滿分12分)

        解:(Ⅰ)當 時, ………………………1分

        當 時, ………………………5分

        也適合上式,所以 ………………………6分( 未檢驗扣1分)

        (Ⅱ) 是首項為 ,公差為 的等差數(shù)列

        ………………………7分

        ………………………8分

        ………………………12分(求和算對一個給2分)

        19.(1)a=1或a=-3 (2)a=-1/2或a=-3/2

        20.解:(1)由已知得到: = ---2分

        令t=cosx,則t ,函數(shù)f(x)化為: --------4分

        所以函數(shù)f(x)的值域為: ------------------------6分

        (2)由于 ,根據(jù)第(1)小題得到:f(x)的最大值為:-3

        -------------------------------------------9分

        解得: 或者 ---------12分

        21、解:(1)因為 的解集為 ,

        所以 的兩個根為 和 , …………………………………2分

        所以 ,解得 . ……………… …………4分

        (2)當 時, 即 ,

        所以 , ……………… ……………5分

        當 時, ; ……………… ………………7分

        當 時, ; ……………… ………9分

        當 時, . ……………… …………………11分

        綜上,當 時,不等式 的解集為 ;

        當 時 ,不等式 的解集為 ;

        當 時,不等式 的解集為 . …………………12分


      第一學期高二數(shù)學期中題目相關文章:

      1.高二數(shù)學期中考試試卷分析

      2.高二數(shù)學期末考試試卷含答案

      3.高二數(shù)學數(shù)列筆記匯總

      4.高二數(shù)學期中考試答案

      5.高二數(shù)學期末考試試卷及答案

      4154599