亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

      應(yīng)縣一中2017-2018學(xué)年高二月考文理科數(shù)學(xué)試卷(2)

      時(shí)間: 夏萍1132 分享

        應(yīng)縣一中2017-2018學(xué)年高二月考文科數(shù)學(xué)試卷

        選擇題:(本大題共12小題,每小題5分,共60分,每小題給出的四個(gè)選項(xiàng),只有一項(xiàng)是符合題目要求的).

        1、直線x=的傾斜角是(  )

        A. 90° B. 60° C. 45° D. 不存在

        是兩條不同的直線,是三個(gè)不同的平面,則下列為真命題的是( )

        A.若,則 B.若α∩γ=,則

        C.,,則 D.若,,則

        3、已知兩條直線y=ax﹣2和y=(a2)x1互相垂直,則a等于(  )

        A.2 B.1 C.0 D.﹣1

        直線:,:,若,則的值為( )

        A. B. 2 C. -3或 D. 3或

        A.30° B.45° C.60° D.90°

        6、點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)坐標(biāo)是( )

        A. B. C. D.

        7、如圖是一個(gè)空間幾何體的三視圖,其中正視圖和側(cè)視圖都是半徑為2的半,俯視圖是半徑為2的圓,則該幾何體的體積等于

        A. B. C. D.

        已知點(diǎn)在直線上,則的最小值為(  )

        A. 3 B. 4 C. 5 D. 6

        9.一空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )

        A.2π+2 B.4π+2C.2π+ D.4π+

        已知點(diǎn),若直線與線段相交,則實(shí)數(shù)的取值范圍是( )

        A. B. 或 C. D. 或

        繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位,所得到的直線為( )

        A. B. C. D.

        12、平面四邊形中,,將其沿對(duì)角線折成四面體,使平面平面,若四面體頂點(diǎn)在同一個(gè)球面上,則該球的體積為

        A. B. C. D.

        二、填空題共小題,每小題5分,共0分13、兩個(gè)半徑為1的鐵球,熔化后鑄成一個(gè)大球,這個(gè)大球的半徑為  .

        如圖, 是水平放置的的直觀圖,則的周長(zhǎng)為 ______.

        在兩坐標(biāo)軸上的截距互為相反數(shù),則實(shí)數(shù)=

        16.如圖2-8在棱長(zhǎng)為2的正方體ABCD-A中為BC的中點(diǎn)點(diǎn)P在線段D上點(diǎn)P到直線CC的距離的最小值為______.

        三、解答題(共6小題,共70分,要求在答題卡上寫出詳細(xì)的解答過(guò)程。)

        17.(1分) 已知直線l經(jīng)過(guò)點(diǎn)P(-2,5),且斜率為-.

        (1)求直線l的方程;

        (2)若直線m與l平行,且點(diǎn)P到直線m的距離為3,求直線m的方程.

        如圖,正三棱柱的所有棱長(zhǎng)均為2,,分別為和的中點(diǎn).

        (1)證明:平面;

        (2)求點(diǎn)到平面的距離.

        .(1分)如圖,菱與四邊形BDEF相交于BD,平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點(diǎn),.

        (I)求證:GM//平面CDE;

        (II)求證:平面ACE⊥平面ACF.

        .(12分)

        21.(1分)通過(guò)點(diǎn)P(1,3)且與兩坐標(biāo)軸的正半軸交于A、B兩點(diǎn).

        (1)直線與兩坐標(biāo)軸所圍成的三角形面積為6,求直線的方程;

        (2)求的最小值;

        22、(1分)如圖,以為頂點(diǎn)的六面體中,和均為等邊三角形,

        且平面平面,平面,,.(1)求證:平面;

        (2)求此六面體的體積. 高二月考一文數(shù)答案2017.9

        選擇題:(本大題共12小題,每小題5分,共60分,每小題給出的四個(gè)選項(xiàng),只有一項(xiàng)是符合題目要求的).

        1-6ACDAAA 7-12 CBCBDA

        二、填空題(共4小題,每小題5分,共20分)

        13.  14. 15. 或 16.

        三、解答題(共6小題,共70分,要求在答題卡上寫出詳細(xì)的解答過(guò)程。

        17.(10分)解 (1)由點(diǎn)斜式方程得,

        y-5=-(x+2),

        ∴3x+4y-14=0.

        (2)設(shè)m的方程為3x+4y+c=0,

        則由平行線間的距離公式得,

        =3,c=1或-29.

        ∴3x+4y+1=0或3x+4y-29=0.

        18(12分)

        【答案】(1)詳見解析;(2).

        解析:(I)證明:由知,又平面平面,所以平面,而平面,∴,在正方形中,由分別是和的中點(diǎn)知,而,∴平面.

        (Ⅱ)解法1:由(I)平面,過(guò)點(diǎn)作,交和分別于點(diǎn)和,則平面,即的長(zhǎng)為到平面的距離,在正方形中,易知,,即,得,故到平面的距離為.

        解法2:如圖,連接,在三棱錐中,設(shè)到平面的距離為,則,將,代入得,得,故到平面的距離為.

        19(12分)

        解析:證明:(Ⅰ)取的中點(diǎn),連接.

        因?yàn)闉榱庑螌?duì)角線的交點(diǎn),所以為中點(diǎn),所以,又因?yàn)榉謩e為

        的中點(diǎn),所以,又因?yàn)椋?,又?/p>

        所以平面平面,

        又平面,所以平面;

        (Ⅱ)證明:連接,因?yàn)樗倪呅螢榱庑危?/p>

        所以,又平面,所以,

        所以.

        設(shè)菱形的邊長(zhǎng)為2,,

        則,

        又因?yàn)椋裕?/p>

        則,,且平面,,得平面,

        在直角三角形中,,

        又在直角梯形中,得,

        從而,所以,又,

        所以平面,又平面,

        所以平面平面.

        20(12分)

        解: S表面=S圓臺(tái)底面+S圓臺(tái)側(cè)面+S圓錐側(cè)面=π×52+π×(2+5)×5+π×2×2

        =(4+60)π.

        V=V圓臺(tái)-V圓錐=π(r+r1r2+r)h-πrh′

        =π(25+10+4)×4-π×4×2=π

        21、(12分)

        【答案】(1);(2);

        解析:(1)設(shè)直線方程為,此時(shí)方程為即

        (2)設(shè)直線方程為

        22、(12分)

        解析:(Ⅰ)作,交于,連結(jié).

        因?yàn)槠矫嫫矫妫?/p>

        所以平面,

        又因?yàn)槠矫妫?/p>

        從而.

        因?yàn)槭沁呴L(zhǎng)為2的等邊三角形,

        所以,

        因此,

        于是四邊形為平行四邊形,

        所以,

        因此平面.

        (Ⅱ)因?yàn)槭堑冗吶切危?/p>

        所以是中點(diǎn),

        而是等邊三角形,

        因此,

        由平面,知,

        從而平面,

        又因?yàn)椋?/p>

        所以平面,

        因此四面體的體積為,

        四面體的體積為,

        而六面體的體積=四面體的體積+四面體的體積

        故所求六面體的體積為2

        【解析】


      猜你感興趣:

      1.高二現(xiàn)代文閱讀模擬題及答案

      2.高二物理第一次月考

      3.高二物理第一學(xué)期月考試題

      4.高二數(shù)學(xué)期中考試情況分析

      5.高二數(shù)學(xué)月考試題含答案

      應(yīng)縣一中2017-2018學(xué)年高二月考文理科數(shù)學(xué)試卷(2)

      應(yīng)縣一中2017-2018學(xué)年高二月考文科數(shù)學(xué)試卷 選擇題:(本大題共12小題,每小題5分,共60分,每小題給出的四個(gè)選項(xiàng),只有一項(xiàng)是符合題目要求的). 1、直線
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式
      3786791