小學(xué)數(shù)學(xué)學(xué)習(xí)方法匯總
數(shù)學(xué),歷來(lái)是所有學(xué)生覺(jué)得“難”和“繁”──也是投入精力最多的學(xué)料之一。如何學(xué)好數(shù)學(xué),可以說(shuō)是所有家長(zhǎng)、學(xué)生、數(shù)學(xué)教師共同關(guān)心問(wèn)題,而學(xué)習(xí)方法會(huì)因人而異,不同的孩子,適合不一樣的學(xué)習(xí)方法;那此時(shí),給孩子挑選適合的學(xué)習(xí)方法,就顯得很關(guān)鍵;本篇高分家長(zhǎng)整理了關(guān)于小學(xué)數(shù)學(xué)的一些學(xué)習(xí)方法匯總,希望能給大家?guī)?lái)幫助;
一、學(xué)會(huì)主動(dòng)預(yù)習(xí)
新知識(shí)在未講解之前,認(rèn)真閱讀教材,養(yǎng)成主動(dòng)預(yù)習(xí)的習(xí)慣,是獲得數(shù)學(xué)知識(shí)的重要手段。因此,培養(yǎng)自學(xué)能力,在老師的引導(dǎo)下學(xué)會(huì)看書,帶著老師精心設(shè)計(jì)的思考題去預(yù)習(xí)。
如自學(xué)例題時(shí),要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒(méi)有新的解法,解題步驟是怎樣的。抓住這些重要問(wèn)題,動(dòng)腦思考,步步深入,學(xué)會(huì)運(yùn)用已有的知識(shí)去獨(dú)立探究新的知識(shí)。
在高分家長(zhǎng)微信后臺(tái),可以看到有些家長(zhǎng)頭疼孩子上課效率很差;這其中很關(guān)鍵的原因是沒(méi)有做好預(yù)習(xí);自然也就做不到有的放矢;
二、聽課不要僅僅是聽,重要的是要思考
一些學(xué)生對(duì)公式、性質(zhì)、法則等背的挺熟,但遇到實(shí)際問(wèn)題時(shí),卻又無(wú)從下手,不知如何應(yīng)用所學(xué)的知識(shí)去解答問(wèn)題。如有這樣一道題讓學(xué)生解“把一個(gè)長(zhǎng)方體的高去掉2_厘米后成為一個(gè)正方體,他的表面積減少了48平方厘米,這個(gè)正方體的體積是多少?”
同學(xué)們對(duì)求體積的公式雖記得很熟,但由于該題涉及知識(shí)面廣,許多同學(xué)理不出解題思路,這需要學(xué)生在老師的引導(dǎo)下逐漸掌握解題時(shí)的思考方法。這道題從單位上講,涉及到長(zhǎng)度單位、面積單位;從圖形上講,涉及到長(zhǎng)方形、正方形、長(zhǎng)方體、正方體;
從圖形變化關(guān)系講:長(zhǎng)方形→正方形;從思維推理上講:長(zhǎng)方體→減少一部分底面是正方形的長(zhǎng)方體→減少部分四個(gè)面面積相等→求一個(gè)面的面積→求出長(zhǎng)方形的長(zhǎng)(即正方形的一個(gè)棱長(zhǎng))→正方體的體積;
經(jīng)老師啟發(fā),學(xué)生分析后,學(xué)生根據(jù)其思路(可畫出圖形)進(jìn)行解答。有的學(xué)生很快解答出來(lái):設(shè)原長(zhǎng)方體的底面長(zhǎng)為X,則2X×4=48得:X=6(即正方體的棱長(zhǎng)),這樣得出正方體的體積為:6×6×6=216(立方厘米)。
所以說(shuō),在課堂上,老師最大的作用是:?jiǎn)l(fā);孩子在課堂上要緊跟老師的思路,靠著老師的引導(dǎo),去思考解題的思路;答案真的不重要;重要的是方法!
三、及時(shí)總結(jié)解題規(guī)律
解答數(shù)學(xué)問(wèn)題總的講是有規(guī)律可循的。在解題時(shí),要注意總結(jié)解題規(guī)律,在解決每一道練習(xí)題后,要注意回顧以下問(wèn)題:
(1)本題最重要的特點(diǎn)是什么?
(2)解本題用了哪些基本知識(shí)與基本圖形?
(3)本題你是怎樣觀察、聯(lián)想、變換來(lái)實(shí)現(xiàn)轉(zhuǎn)化的?
(4)解本題用了哪些數(shù)學(xué)思想、方法?
(5)解本題最關(guān)鍵的一步在那里?
(6)你做過(guò)與本題類似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發(fā)現(xiàn)幾種解法?其中哪一種最優(yōu)?那種解法是特殊技巧?你能總結(jié)在什么情況下采用嗎?
把這一連串的問(wèn)題貫穿于解題各環(huán)節(jié)中,逐步完善,持之以恒,孩子解題的心理穩(wěn)定性和應(yīng)變能力就可以不斷提高,思維能力就會(huì)得到鍛煉和發(fā)展