高中考試基礎知識點
高中考試基礎知識點歸納
數(shù)學教會我們分析和解決問題的方法,培養(yǎng)了抽象思維和推理技巧,在面對復雜問題時能更加有條理地進行思考。下面是小編為大家?guī)淼?/span>高中考試基礎知識點,希望大家能夠喜歡!快來看看吧!
不等式
1.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
2.絕對值不等式的解法及其幾何意義是什么?
3.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
4.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎,分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
5. 在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。
6. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a
數(shù)列題
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單
求函數(shù)的極值:
設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值).
可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號并由表格判斷極值.
3.求函數(shù)的值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的.
求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值.
數(shù)列
1.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
2.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數(shù)。
3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
4.數(shù)列單調(diào)性問題能否等同于對應函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
5.應用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結(jié)合一些數(shù)學方法用來證明時也成立。
立體幾何題。
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的.角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。