亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 學習方法 > 教學方法 >

      數學思維訓練的學習方法

      時間: 巧綿20 分享

      數學思維的訓練是需要一套完成的訓練方法的,經過思維的訓練,數學成績一定可以大大提高,下面小編收集了一些關于數學思維訓練的學習方法,希望對你有幫助

      數學思維訓練的學習方法(小學)

      1.轉化型

      這是解決問題遇到障礙受阻時把問題由一種形式轉換成另一種形式,使問題變得更簡單、更清楚,以利解決的思維形式。在教學中,通過該項訓練,可以大幅度地提高學生解題能力。如:某一賣魚者規(guī)定,凡買魚的人必須買筐中魚的一半再加半條。照這樣賣法,4 人買了后,筐中魚盡,問筐中原有魚多少條?該題對一些沒有受過轉化思維訓練的學生來說,會感到一籌莫展。即使基礎較好的學生也只能復雜的方程。

      但經過轉化思維訓練后,學生就變得聰明起來了,他們知道把買魚人轉換成1人,顯然魚1條;然后轉換成2人,則魚有3條;再3人,則7條;再4人,則15條。

      2.系統(tǒng)型

      這是把事物或問題作為一個系統(tǒng)從不同的層次或不同的角度去考慮的高級整體思維形式。在高年級除結合綜合應用題以外還可編制許多智力訓練題來培養(yǎng)學生系統(tǒng)思維能力。如:1 2 3 4 5 6 7 8 9在不改變順序前提下(即可以將幾個相鄰的數合在一起成為一個數,但不可以顛倒),在它們之間劃加減號,使運算結果等于1OO。象這道題就牽涉到系統(tǒng)思維的訓練。教師可引導學生把10 個數看成一個系統(tǒng),從不同的層次去考慮、第一層次:找100 的最接近數,即89 比100 僅少11。第二個層次:找11 的最接近數,很明顯是前面的12。第三個層次:解決多l(xiāng) 的問題。整個程序如下:12+3+4+5-6-7+89=100

      3.激化型

      這是一種跳躍性、活潑性、轉移性很強的思維形式。教師可通過速問速答來訓練練學生。如問:3 個5 相加是多少?學生答:5+5+5=15 或5×3=15。教師又問:3 個5 相乘是多少?學生答:5×5×5=125。緊接著問:3 與5 相乘是多少?學上答:3×5=15,或5×3=15。通過這樣的速問速答的訓練,發(fā)現學生思維越來越活躍,越來越靈活,越來越準確。

      4類比型

      這是一種對并列事物相似性的個同實質進行識別的思維形式。這項訓練可以培養(yǎng)學生思維的準確性。如:

      ①金湖糧店運來大米6噸。比運來的面粉少1/4噸、運來面粉多少噸?

      ②金湖糧店運來大米6噸,比運來的面粉少1/4,運來面粉多少噸?

      以上兩題,雖然相似,實質不同,一字之差,解法全異,可以點撥學生自己辨析。通過訓練,學生今后碰到類似的問題便會仔細推敲,這樣就大大地提高了解題的準確性

      數學思維訓練的學習方法(初中)

      1、對應思想方法

      對應是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學數學一般是一一對應的直觀圖表,并以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。

      2、假設思想方法

      假設是先對題目中的已知條件或問題作出某種假設,然后按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最后找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。

      3、比較思想方法

      比較思想是數學中常見的思想方法之一,也是促進學生思維發(fā)展的手段。在教學分數應用題中,教師善于引導學生比較題中已知和未知數量變化前后的情況,可以幫助學生較快地找到解題途徑。

      4、符號化思想方法

      用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。

      5、類比思想方法

      類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。

      6、轉化思想方法

      轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。

      7、分類思想方法

      分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標準。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標準就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決于分類標準的正確、合理性,數學知識的分類有助于學生對知識的梳理和建構。

      8、集合思想方法

      集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時采用了交集的思想方法。

      9、數形結合思想方法

      數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,借助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常借助線段圖的直觀幫助分析數量關系。

      10、統(tǒng)計思想方法

      小學數學中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數應用題是體現出數據處理的思想方法。

      11、極限思想方法

      事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講“圓的面積和周長”時,“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎上想象它們的極限狀態(tài),這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發(fā)了無限逼近的極限思想。

      12、代換思想方法

      它是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?

      13、可逆思想方法

      它是邏輯思維中的基本思想,當順向思維難于解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。

      14、化歸思維方法

      把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”。而數學知識聯(lián)系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助?;瘹w的方向應該是化隱為顯、化繁為簡、化難為易、化未知為已知。

      15、變中抓不變的思想方法

      在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時科技書占30%,又買來科技書多少本?

      16、數學模型思想方法

      所謂數學模型思想是指對于現實世界的某一特定對象,從它特定的生活原型出發(fā),充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養(yǎng)學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養(yǎng)所追求的目標。

      17、整體思想方法

      對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。

      數學思維訓練的學習方法相關文章:

      1.數學六大學習方法三大復習技巧

      2.學習思維的訓練方法

      3.如何提升數學思維的方法

      4.怎樣對孩子進行數學思維訓練

      5.小學五年級數學思維訓練方法

      6.數學思維方法有哪些

      7.怎樣訓練提高數學的邏輯思維

      8.小學生數學思維訓練方法

      9.怎樣培養(yǎng)數學思維

       

      432604